This disclosure relates to gas turbine engines, and more particularly to thermal management of turbine components of gas turbine engines.
Gas turbines hot section components, for example, turbine vanes and blades and blade outer air seals, in the turbine section of the gas turbine engine are configured for use within particular temperature ranges. Often, the conditions in which the components are operated exceed a maximum useful temperature of the material of which the components are formed. Thus, such components often rely on cooling airflow to cool the components during operation. For example, stationary turbine vanes often have internal passages for cooling airflow to flow through, and additionally may have openings in an outer surface of the vane for cooling airflow to exit the interior of the vane structure and form a cooling film of air over the outer surface to provide the necessary thermal conditioning. Similar internal cooling passages are often included in other components, such as the aforementioned turbine blades and blade outer air seals.
Turbulators are often included in the cooling passages, affixed to one or more walls of the cooling passage to increase turbulence of the cooling airflow flowing through the cooling passage, thereby improving heat transfer characteristics of the cooling passage. The turbulators are typically “unidirectional”, meaning that their turbulation capabilities are dependent on the direction of the cooling airflow For example, one shape of turbulator often utilized is triangular in shape. When cooling flow is directed such that it first encounters a leg of the triangle it has a first degree of tabulation, but when the cooling airflow flows in an opposite direction and first encounters a vertex of the triangle, turbulation is greatly reduced.
In one embodiment, a gas turbine engine component includes a body defining a cooling airflow passage thereat configured for directing a cooling airflow therethrough. A plurality of turbulators are positioned at at least one passage wall of the cooling airflow channel. Each turbulator of the plurality of turbulators includes a plurality of facets extending outwardly from a central portion.
Additionally or alternatively, in this or other embodiments each turbulator is symmetrical about a turbulator central axis.
Additionally or alternatively, in this or other embodiments the plurality of facets are equally spaced about the turbulator central axis.
Additionally or alternatively, in this or other embodiments the plurality of facets are in the range of 4 facets to 24 facets equally spaced about the central axis.
Additionally or alternatively, in this or other embodiments each facet of the plurality of facets is triangular in shape.
Additionally or alternatively, in this or other embodiments the plurality of facets are configured and arranged to increase a surface area of the turbulator in the path of an oncoming cooling airflow.
Additionally or alternatively, in this or other embodiments the plurality of turbulators are configured and arranged to exhibit substantially equal turbulence-inducing capabilities regardless of a flow direction of the cooling airflow.
Additionally or alternatively, in this or other embodiments the component is one of a turbine blade, turbine vane or blade outer airseal.
In another embodiment, a blade outer airseal for a gas turbine engine includes a sealing surface configured to maintain a clearance between the blade outer airseal and an adjacent turbine blade. A back wall is positioned opposite the sealing surface, the back wall at least partially defining a cooling airflow passage for flowing a cooling airflow therethrough to reduce a temperature of the blade outer airseal via thermal energy exchange between the blade outer airseal and the cooling airflow. A plurality of turbulators are located the back wall of the blade outer airseal, each turbulator of the plurality of turbulators including a plurality of facets extending outwardly form a central portion.
Additionally or alternatively, in this or other embodiments each turbulator is symmetrical about a turbulator central axis.
Additionally or alternatively, in this or other embodiments the plurality of facets are equally spaced about the central axis.
Additionally or alternatively, in this or other embodiments the plurality of facets are in the range of 4 facets to 24 facets equally spaced about the central axis.
Additionally or alternatively, in this or other embodiments each facet of the plurality of facets is triangular in shape.
Additionally or alternatively, in this or other embodiments the plurality of facets are configured and arranged to increase a surface area of the turbulator in the path of an oncoming cooling airflow.
Additionally or alternatively, in this or other embodiments the plurality of turbulators are configured and arranged to exhibit substantially equal turbulence-inducing capabilities regardless of a flow direction of the cooling airflow.
In yet another embodiment, a gas turbine engine includes a combustor and a plurality of gas turbine engine components positioned in fluid communication with the combustor. Each component includes a body defining a cooling airflow passage thereat configured for directing a cooling airflow therethrough. A plurality of turbulators are located at at least one passage wall of the cooling airflow channel, each turbulator of the plurality of turbulators including a plurality of facets extending outwardly from a central portion.
Additionally or alternatively, in this or other embodiments each turbulator is symmetrical about a turbulator central axis.
Additionally or alternatively, in this or other embodiments the plurality of facets are configured and arranged to increase a surface area of the turbulator in the path of an oncoming cooling airflow.
Additionally or alternatively, in this or other embodiments the plurality of turbulators are configured and arranged to exhibit substantially equal turbulence-inducing capabilities regardless of a flow direction of the cooling airflow.
Additionally or alternatively, in this or other embodiments the component is one of a turbine blade, turbine vane or blade outer airseal.
The subject matter which is regarded as the present disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The gas turbine engine 10 further comprises a turbine section 20 for extracting energy from the combustion gases. Fuel is injected into the combustor 18 of the gas turbine engine 10 for mixing with the compressed air from the compressor 16 and ignition of the resultant mixture. The fan 12, compressor 16, combustor 18, and turbine 20 are typically all concentric about a common central longitudinal axis of the gas turbine engine 10.
The gas turbine engine 10 may further comprise a low pressure compressor located upstream of a high pressure compressor and a high pressure turbine located upstream of a low pressure turbine. For example, the compressor 16 may be a multi-stage compressor 16 that has a low-pressure compressor and a high-pressure compressor and the turbine 20 may be a multistage turbine 20 that has a high-pressure turbine and a low-pressure turbine. In one embodiment, the low-pressure compressor is connected to the low-pressure turbine and the high pressure compressor is connected to the high-pressure turbine.
The turbine 20 includes one or more sets, or stages, of fixed turbine vanes 22 and turbine rotors 24, each turbine rotor 24 including a plurality of turbine blades 26.
The blade outer airseal 32 includes a forward flange 34 and an aft flange 36 to secure the blade outer airseal 32 in place in the turbine 20. A sealing surface 38 extends between the forward flange 34 and aft flange 36 to define an interface with the blade tip 30. In some embodiments, the sealing surface 38 may include an abradable material to allow for contact between the sealing surface 38 and the blade tip 30 without damaging substrate material of the sealing face 38. A backside surface 40 opposite the sealing surface 38 defines a cooling passage 42 (best shown in
The cooling passage 42 includes an arrangement of turbulators 46 extending at least partially cross the cooling passage 42. The turbulators 46 induce turbulence in the cooling airflow 44 flowing through the cooling passage 42, which increases the efficiency of thermal energy exchange between the cooling airflow 44 and the blade outer airseal 32. The turbulators 46 are configured to be multi-directional, in other words having substantially equal turbulence-inducing capability regardless of a direction of the cooling airflow 44 through the cooling passage 42.
Embodiments of multi-directional turbulators 46 are illustrated in
In the embodiment of
Additional embodiments are shown in
While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.