Proper grooming of golf course greens seeks to maintain consistent playability of the grass surface, and to eliminate “grain,” texture in the green that can bias the roll of the golf ball. If the leaves of grass in the green are oriented in a particular direction, such as can naturally occur in response to the direction of sunlight, balls hit in the direction the grass is leaning, or “with the grain,” face less resistance to their rolling than balls hit in the reverse direction, or “against the grain.” Grooming the grass in the green to stand straight involves maintaining precise cutting height and reducing to the greatest extent any factors which would introduce a non-vertical orientation of the grass leaves.
The design of modern reel mower cutting units utilizes a powered reel of several helical blades which rotate in close contact with a fixed bedknife to clip the grass leaves to a uniform height in a scissor like fashion. The number of blades in a cutting reel varies, with more blades providing a greater “clip frequency” over a given distance of the reel mower cutting unit's forward travel. The cutting reel and bedknife are generally mounted between two ground-contacting rollers in a frame that permits the height of cut to be adjusted precisely. In walk-behind reel mowers, the rear roller, also called the traction roller, is powered, and the front roller is generally used to adjust the cutting height. In current walk-behind designs, the cutting reel is either mechanically linked to the engine and drivetrain powering the rear traction roller, or is powered by an electric motor which permits the clip frequency of the cutting reel to be set independent of the engine's throttle setting and speed of ground travel, an arrangement termed a “hybrid” drive.
In ride-on reel mowers, one or more powered helical reel cutting units is pushed or pulled across the grass surface by a tractor, with each cutting unit mounted on its own ground-contacting rollers in a manner that permits the cutting units to individually adjust to the contours of the ground. Hybrid drive systems are also available for the cutting units of ride-on reel mowers.
Powered rotating brushes are known which may be used to keep the ground-contacting rollers of the reel mower free of grass clippings, which could otherwise adhere to the rollers and change their effective diameter, resulting in a change in the height of the cut. For example, uneven cutting could result from clumps of grass clippings adhering to the rollers, producing “bumpy” or “washboard” greens.
It is also known in the art to provide a mechanical means for conditioning the grass leaves prior to cutting, generally through the use of a rotating powered brush or set of rotating vertical dethatching blades located between the front roller of a reel mower cutting unit and the helical cutting reel. Many reel mower cutting units have a groomer drive accessory configured to power such turf conditioning attachments. Such conditioning means are intended to take advantage of the natural plasticity of the grass leaves in order to temporarily re-orient them in a more vertical direction immediately prior to cutting. Changing the orientation of the grass leaves, such as through brushing, increases cutting effectiveness by helping to ensure that grass leaves do not pass below the blades of the cutting reel and thus escape cutting. Mechanically conditioning the grass prior to cutting can, with repeated application, also train the grass leaves in the green to a more upright growth habit.
Existing mechanical means for conditioning the grass prior to cutting are, however, inefficient for their intended purpose, and can introduce “grain” and other problems into the reel mowing process. Existing conditioning means which use rotating dethatching blades provide little “lift” to the grass, because the blades are intended primarily to cut the stolons connecting individual grass plants, rather than re-orient the grass leaves. Existing powered brushes for conditioning the grass prior to cutting are also inefficient, and their design can introduce grain, by “augering” the leaves of the grass preferentially in one direction.
Earlier designs for powered brushes having continuously bristled surfaces were less effective at penetrating the grass canopy, and earlier powered brushes having discrete tufts of long bristles used too few rows of tufts for optimum effectiveness, and the long bristles tended to flex too much and wear out faster. Other techniques, such as the use of separate grooming equipment prior to mowing do not address the compaction of the turf and compression of grass leaves caused by the front roller of the reel mower cutting unit, and a delay between grooming the turf and mowing permits the grass leaves time to relax prior to cutting.
A need therefore exists in the art for an improved powered turf conditioning brush for conditioning the grass prior to cutting that provides increased efficiency, improved lift, and which minimizes the introduction of grain.
The present invention may be embodied in an improved turf conditioning brush suitable for use with reel mower cutting units, such as those used for precision mowing of golf course greens.
The turf conditioning method and apparatus described herein provides a powered rotary brush that may be mounted on a reel mower cutting unit, transversely to the direction of travel, between the front ground-contacting roller and cutting reel, such as within the groomer drive accessory, and may be configured to be adjustable in elevation above the surface of the turf in order to vary the amount of contact of the brush with the turf and to permit adjustment for wear of the brush.
Depending upon the condition of the turf, it may be desired to adjust the height of the brush to apply a greater or lesser brushing intensity or “aggressiveness” of turf conditioning prior to cutting, and as described herein, the method and system may comprise turf conditioning brushes having different degrees of bristle stiffness suitable for various turf conditions and types of grass, the bristle stiffness being determined primarily by the bristle diameter and the material or materials from which the bristles are made.
A turf conditioning brush constructed according to one embodiment has a generally cylindrical base that is configured to rotate by one of several means, including, but not limited to, being configured as a sleeve rotatably mounted on an axle, a sleeve engaging a rotatable spindle, or the base may be constructed integrally to a rotatable spindle. Motive force for the rotation of the sleeve or spindle may be supplied by any of several means, including, but not limited to, indirect means such as a geartrain, a drive belt engaging a pulley, a drive chain engaging a sprocket, or the sleeve or spindle may be directly driven. In an example embodiment, the brush base is configured as a sleeve engaging a rotatable spindle. The direction of rotation of the brush base may be the same as that of the cutting reel or opposite to that of the cutting reel, and in one embodiment the rotation of the brush base is opposite to that of the cutting reel, such that the grass-contacting face of the brush is rotating towards the oncoming grass leaves and away from the cutting reel when the reel mower cutting unit is in forward motion.
According to one embodiment, a plurality of bristle tufts are attached radially to the brush base in a number of parallel rows along the width of the brush base, with the centers of the bristle tufts in each row spaced equally apart from each other, and the centers of the bristle tufts in each row offset from those in adjacent rows by an offset value that is the ratio of the distance that the bristle tufts in each row are spaced apart divided by an offset factor that is a divisor of the number of parallel rows. In addition to selecting brushes having different degrees of bristle stiffness as described above, one skilled in the art may also select brushes having different tuft spacing values and tuft offset values as desired based upon the turf conditions or type of grass to be mowed.
Having the bristle tufts spaced apart and offset from each other in accordance with the present disclosure improves brushing efficiency in comparison to a brush having a continuously bristled surface, by enabling the bristle tufts to better penetrate the leaf canopy of the turf. Additionally, the generally symmetrical arrangement of tufts provided by the present disclosure does not produce an augering effect that may introduce “grain” into the turf. A turf conditioning brush constructed according to the present disclosure therefore provides an improved lifting action over the prior art.
These and other objects, features and advantages of the invention will be further described and more readily apparent from a review of the detailed description of the embodiments which follow.
As shown in
In contrast with brushes having an arrangement of bristle tufts which may produce an undesirable “augering” effect which can introduce “grain” into a green, brushes having bristle tufts which are mounted radially in parallel rows along the width of the brush base produce a lifting effect that is aligned with the direction of travel of the mower. Considering the “contact patch” of the brush, which is the portion of the brush in contact with the turf at a given time, the parallel rows of bristle tufts encounter the grass canopy straight on, and lift the grass leaves vertically more efficiently. The efficiency of a turf conditioning brush having parallel rows of bristle tufts along the width of the brush base may be further augmented by increasing the absolute “brush frequency” or Fa, defined as the number of times per rotation a given spot in the contact patch of the brush would be touched by a bristle tuft if the brush were rotating but not moving forward. The effective “brush frequency” or Fe, derives from the absolute brush frequency, but takes account of the mower's forward motion. The forward motion of the mower effectively reduces the brush frequency because a given spot in the turf generally will not remain within the contact patch of the brush for very long.
The use of a hybrid drivetrain that permits the rotation speed of the groomer drive and cutting reel to be adjusted independently of the throttle and traction drive can serve to compensate for a lower effective brush frequency to some degree, but providing a brush having a higher absolute brush frequency will benefit both hybrid and non-hybrid driven reel mowers, by allowing the operator to be assured of effective brushing and lift even while mowing at higher speeds of forward travel.
As shown in
Just as a larger number of helical blades in a cutting reel results in a greater “clip frequency” for the reel, the greater the number of tuft rows N in the brush, the higher the effective “brush frequency” can be for a given rate of brush rotation and mower forward travel. However, brushes which present a contact patch that is a continuously bristled surface are undesirable due to their bristle tufts not being able to effectively penetrate the grass canopy. Spacing between the rows of bristle tufts and between the bristle tufts in the same row is necessary to ensure effective penetration of the canopy and to produce the desired lifting effect that re-orients the grass leaves in a more vertical direction. In one embodiment, the bristle tufts in adjacent rows may be offset, because spacing the bristle tufts of adjacent rows in line with each other around the circumference of the brush base would produce gaps where the absolute and effective brush frequency would be zero. Offsetting the centers of the bristle tufts in adjacent rows by an offset value that is the ratio of the tuft spacing distance divided by an offset factor that is a divisor of the number of parallel rows N, produces a contact patch having a uniform absolute brush frequency that is N divided by the offset factor.
For example, as illustrated in
In accordance with an exemplary embodiment, N may be a value between 8 and 16, and the rows of bristle tufts 200 arranged radially around the brush base 100 at an angle of 360/N degrees relative to each other, as depicted in
As shown in detail in FIGS, 2 and 4, each bristle tuft 200 comprises a plurality of bristles 210, with each bristle 210 having a predetermined length (designated Bl) and diameter (Bd), with the length Bl defined as the length of the bristle extending above the brush base 100. Both Bl and Bd may be varied as desired to achieve a predetermined stiffness of the bristle tufts 200. In accordance with the present invention, Bl is no greater than ⅔ of the base radius R. Short bristles relative to the base radius are desirable because they flex less than longer bristles, and tend to wear less quickly. In a preferred embodiment, Bl is approximately one half inch (½″), with Bd having a value between 0.01 and 0.025 inches. The bristles 210 may be made of any suitable pliable material, such as plastic, metal, or natural fibers, and in a preferred embodiment are made of nylon. The bristles 210 may be attached to the brush base 100 by any suitable method, such as thermoplastic welding, mechanical fasteners, or adhesives, and in a preferred embodiment are attached with mechanical fasteners.
The total brush diameter (designated D), shown in
As shown in
As shown in
According to the present invention, and as shown in
As shown in
As shown in
In this embodiment of the invention, shown in a detailed end-on perspective in
Although the invention has been shown and described with reference to certain specific presently preferred embodiments, the given embodiments should not be construed as limitations on the scope of the invention, but as illustrative examples, and those skilled in the art to which this invention pertains will undoubtedly find alternative embodiments obvious after reading this disclosure. With this in mind, the following claims are intended to define the scope of protection to be afforded the inventor, and these claims shall be deemed to include equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
This application is a continuation of U.S. Non-provisional application Ser. No. 13/071,268, filed Mar. 24, 2011, which claims benefit to U.S. Provisional Application Ser. No. 61/317,051, filed Mar. 24, 2010. Each patent application identified above is incorporated here by reference in its entirety to provide continuity of disclosure.