This invention relates generally to detachable auxiliary handles for use with long shaft implements such as shovels, rakes, pitchforks, brooms, etc.
Snow shoveling can be an especially painful experience due to low back disc compression from repeated bending and lifting of heavy snow loads (the average shovelful of snow weighs 15-25 pounds). Each year over 100,000 people in North America end up in emergency rooms, clinics and doctors' offices due to injuries related to snow shoveling; sadly over 100 people suffer cardiac arrest and die. The shovel is ubiquitous, yet its design has remained relatively unchanged for thousands of years. The majority of households in North America have at least one long shaft tool that, due to design, will cause some level of back strain due to inappropriate bending or excessive spinal loading.
Accordingly, the applicants have recognized a need for improved systems and methods for facilitating the use of various implements.
The Turn Collar Fulcrum Handle System described herein may provide a single light weight fulcrum handle with no moving parts, complicated assembly or tools required to releasably attach it to long shaft tools. The Turn Collar Fulcrum Handle is a simple click on/click off design that may be moved from one tool to another tool. The Turn Collar Fulcrum Handle can be placed adjacent to the load (e.g. a shovel full of snow), thereby reducing the lifting effort which may be required and which may also reduce the need for the user to bend.
Light weight versions of the Turn Collar Fulcrum Handle may be used for brooms, mops, rakes, etc., while a heavy duty J-hook turn collar configuration may be used for lifting heavier loads that require optimal ergonomic support, while a version with a shorter or no fulcrum arm can attach to long shaft tools that did not come with an end handle by attaching with the unique locking turn collar. In summary, an easily repositionable turn collar fulcrum handle will ensure continued use when and where it is needed in order to provide optimal ergonomics and safe lifting when using long shaft tools to lift loads that can cause pain, fatigue and repetitive stress or back injuries.
The described embodiments relate to auxiliary or fulcrum handles which may be releasably coupled to tools and other implements.
In one broad aspect, there is provided a handle for use with and/or for releasably coupling to an implement. The handle may include: a handgrip, an arm operatively coupled to the handgrip, and a collar operatively coupled to the arm remote from the handgrip. The collar may be configured to releasably receive a shaft of the implement. The collar may comprise two substantially opposing collar portions defining a shaft pathway, wherein the collar portions are displaced axially along the shaft pathway to form a keyway sized to receive the shaft when the shaft and the shaft pathway are substantially orthogonal to each other.
In some instances, the collar portions may be curvilinear. As well, in some implementations, the handle may include a support portion, wherein the shaft pathway is intermediate or between the support portion and the handgrip.
In some embodiments, the collar comprises a reinforced spine. The shaft pathway may be positioned between the spine and the handgrip.
The collar may include a support and the shaft pathway may be positioned between the support and the handgrip.
In some instances, the collar may comprise a J-hook configuration.
A sizing insert may be provided which is configured to seat within the collar. The collar may be configured to receive a sizing insert. In some such implementations, the sizing insert may comprise a nub and wherein the collar comprises a dimple configured to receive the nub.
For some embodiments, the arm may be configured for telescopic extension.
Another broad aspect may be directed towards a set of handles for simultaneous use with an implement. Each handle in the set may comprise: a handgrip, an arm operatively coupled to the handgrip, and a collar operatively coupled to the arm remote from the handgrip and configured to releasably receive a shaft of the implement. The collar may include: two substantially opposing collar portions defining a shaft pathway, wherein the collar portions are displaced axially along the shaft pathway to form a keyway sized to receive the shaft when the shaft and the shaft pathway are substantially orthogonal to each other. The set may comprise a first handle and a second handle, and the arm of the first handle is of a different length than the arm of the second handle.
In some implementations, the collar portions may be curvilinear.
One or both of the first and second handles may comprise a support portion, wherein the shaft pathway is intermediate the support portion and the handgrip.
In some instances, one or both of the first and second handles may be configured such that the collar comprises a reinforced spine. In such a configuration, the shaft pathway may be positioned between the support and the handgrip.
In some implementations, for at least one handle in the set, the collar comprises a J-hook configuration.
The set may also include a sizing insert configured to seat within the collar of at least one handle in the set. In some instances, the collar of at least one handle in the set is configured to receive a sizing insert. The sizing insert may comprise a nub and the collar of the at least one handle in the set may comprise a dimple configured to receive the nub.
For some embodiments, the arm of at least one handle in the set may be configured for telescopic extension.
These and other aspects and features of various embodiments will be described in greater detail below, with reference to the figures in which like numbers correspond to like references throughout.
Embodiments are described in further detail below, by way of example only, with reference to the accompanying drawings, in which:
a shows a Top view of the Handle of
b shows a Bottom view of the Handle of
a shows a Right Side view of the Handle of
b shows a Left Side view of the Handle of
a shows a Front Isometric view of the Handle of
b shows a Rear Isometric view of the Handle of
a shows a Bottom Isometric view of the Handle of
b shows a Bottom Isometric view of the Handle of
a shows a Side schematic illustration of a user lifting a load by the conventional means.
b shows a Side schematic illustration of a user lifting a load with the Handle of
a shows Side views of a sizing Insert and a first alternate embodiment of a Turn Collar Handle configured to receive the sizing Insert.
b shows enlarged views of a cross section of the Left Collar portion of the Handle of
a shows a Rear Isometric view of a second alternate embodiment (J-Hook configuration) of a Turn Collar Handle employing a replaceable Turn Collar.
b shows a Front Isometric view and
a shows a Front Isometric view of a set of Handles corresponding to the Handle in
b shows a front isometric view of a third alternate embodiment of a Turn Collar Handle.
c shows a Side view of the Handle of
All elements will now be introduced by reference to drawing figures, then how each element functions and interacts with each other element will be described in more detail when necessary. For sake of brevity in this disclosure, the Turn Collar Fulcrum Handle System may also be referred to herein as the TCF Handle or handle or Handle.
a shows a top view of the TCF Handle 10 with its turn collar 12, a fulcrum arm 54, and a handle portion 26 with its yoke 28 and handgrip 30. As will be understood, the arm 54 is mounted to, comolded together with, or otherwise operatively coupled to the handgrip 30. Correspondingly, the collar 12 is operatively coupled to the arm 54, remote from the handgrip.
a shows a right side view of a TCF Handle 10, with the gusset 24 sides of the fulcrum arm 54, and highlighting how both collar portions have a bevel 18 as shown in the keyway 22.
a shows a front view of a TCF Handle 10 as viewed down the bore or shaft pathway of its turn collar 12. This view also illustrates the curvilinear nature of the collar portions, 14, 16, forming a substantially cylindrical shaft pathway in this embodiment. However, it should be understood that the shaft pathway does not need to be strictly cylindrical and that other shapes and configurations may be utilized as appropriate.
a shows a bottom view of the TCF Handle 10 as an implement shaft 34 fits onto its keyway 22, prior to turning.
a shows a side view of schematic “stick figure” illustration of a User 36 lifting a load 38 on the end of a shaft 34 by conventional means.
a shows side views of a sizing Insert 42 configured to securely fit into or seat within a collar 12′ of a first alternate embodiment of a handle shown generally as 10′ by means of corresponding one or more nubs 44 and one or more dimples 46.
a shows a rear isometric view of a second alternate embodiment of the TCF Handle shown generally as 10″ employing an interchangeable turn collar (having a J-hook configuration) 12″ having collar portions 14″, 16″ and a reinforced spine 20″ which slides into the slot 62 at the top of the stage 60 which forms the lower part of the J-Hook 58. As will be understood, the shaft pathway formed by the collar portions 14″, 16″ is intermediate or positioned between the spine 20″ and the handgrip 30″. A tubular fulcrum arm 54″ is secured into the hook sleeve 56 and then handle sleeve 50 by means of fasteners 52. Note that in various portions of the design of the handle portion 26″ and J-Hook assembly 58, coring 48 is present to lighten the structure and permit easy removal from plastic molds. Coring 48 can also be used to create better a gripping surface as seen on the handgrip 30″.
c shows a left side isometric view of the second alternate embodiment 10″.
a shows a Front Isometric view of a set (shown generally as 100) of a plurality (typically two) handles, a first handle 10A and a second handle 10B, the respective arms 54A, 54B of which are of different lengths. In the illustrated example, the arm 54B of the second handle 10B, attached to the distal end of the implement shaft 34 (remote from the load being carried at the head of the shovel 32) is shorter than the arm 54A of the first handle 10A. As will be understood, each handle in the set 100 may comprise various combinations of features and configurations as contemplated herein. Furthermore, each handle in the set 100 need not (but may) share the same general configuration as every other handle in the set 100. For example, a first handle might comprise a J-hook configuration for improved weight bearing, while a second handle in the set 100 might comprise the configuration illustrated in
b shows a Front Isometric view of a third alternate embodiment of a handle 10″′ with handle portion 26″′ and arm 54″′.
For consistency of understanding, the following key terms will be explained, namely turn collar, implement, keyway, collar half and fulcrum handle.
In general terms, a Turn Collar, may be understood to comprise a tube or pathway (sometimes referred to herein as a “shaft pathway”) defined by two substantially opposing and substantially rigid collar halves or portions connected by a spine with a central keyway the width of an implement shaft. The collar portions may be displaced axially along the shaft pathway, thereby forming the keyway between them. As will be understood, the keyway is configured or sized to receive a shaft of an implement when the shaft is substantially orthogonal to the shaft pathway. When an implement shaft is placed in the keyway of a turn collar, and the latter is turned 90 degrees, the shaft can be locked securely within the turn collar halves. Note: when the shaft engages the beveled edges of the collar halves, they are levered outwards momentarily so that when the shaft is fully seated within the turn collar, the collar halves or portions grip the shaft securely, restricting handle movement up or down the shaft, side to side handle movement, and the inadvertent and potentially dangerous release of the fulcrum handle from the shaft when loaded.
As used herein, an Implement will generally be understood to refer to a tool having a shaft. The shaft of such a tool may be lengthy (but is not necessarily required to be) and may in some instances be used to lift, push, dig, lever, pull, or otherwise manipulate loads at a distance. By way of example only and without limitation, implements may include rakes, spades or shovels, brooms, pitchforks, thatchers, snow shovels, paint rollers, hoes, trowels, and hand gardening tools.
As will be generally understood, as used herein, a Keyway may be in the form of an aperture in the center of turn collar where the shaft of an implement is inserted at an ergonomically appropriate position for use of the handle described herein. Turning either the turn collar or the shaft within the keyway so that opposing collar halves lock the shaft within the turn collar, the fulcrum handle is then secured to the shaft of an implement.
As used herein, a Collar Half or portion (sometimes referred to as a Left Collar and Right Collar as seen from user's position above the implement shaft with a TCF Handle installed) will generally be understood to refer to each half or segment of a turn collar which together with the spine enclose and secure the attached handle to a (typically cylindrical) implement shaft.
A fulcrum is the support about which a lever pivots, and in the case of a long shaft implement is the point between the user's hands gripping the shaft. By the addition of a fulcrum handle (as described in this disclosure) on the implement shaft, the fulcrum point is raised to a more ergonomic position, and (as illustrated in
Some of the unique attributes and functionalities of the Turn Collar Fulcrum Handle System 10 as illustrated in this disclosure are facilitated by the simple and versatile turn collar 12 design. The turn collar 12 permits easy yet secure repositioning of a fulcrum handle without the need for any secondary attachment means or tools required. By this means, long shaft implements can be used in a safer and more ergonomic manner. As shown in
While there is some uniformity to common long tool shaft diameters, often 1.25 inches, not all long tool shafts are the same. As shown in
Alternate embodiments of the Turn Collar Fulcrum Handle System 10 will now be discussed. Other embodiments are not ruled out or similar methods leading to the same result.
While the embodiment illustrated and described in relation to
As shown in
As shown in
Materials used for constructing a turn collar fulcrum handle may depend on the loading expected on the implement shaft, as well as the environment in which the TCF Handle will be used. Hence the gusseted or the J-hook versions may be completely formed from injection molded plastics, but a high wear component such as the turn collar may be made from more durable plastic compounds, carbon fiber, metal, or similar more resilient materials.
Other advantages of using the turn collar fulcrum handle over other methods or devices will now be discussed. The TCF Handle system may enhance and improve the use of most long shaft implements by providing ergonomic use, improved safety, reduced pain and fatigue and range of motion capabilities. The TCF Handle may be used with push brooms where the handle extends reach of arms without requiring the user to bend over to create force on surface to scrub away debris. The same principle enables one to use a snow shovel with greater control and ergonomic efficiency. While lighter implements may not carry the same loads as shovels, etc., they do generate repetitive stress injuries if not used properly. The TCF Handle may improve the use of brooms, mops, rakes, and other implements that can cause injury with overuse. Another application of the TCF Handle system may permit the use of a long shaft tool when a person has an existing back injury. If such person is unable to freely bend forward, or cannot bend their legs, use of a TCF Handle may facilitate the use the long shaft tool. The various disclosed embodiments may allow for different loading applications and may also provide an ergonomic fulcrum handle. The disclosed embodiments may also provide the ability to easily reposition the handle at different points along a tool shaft or onto a different tool without secondary attachment means.
The foregoing description of the preferred apparatus and method of installation should be considered as illustrative, and not limiting. Other forming techniques and other materials may be employed towards similar ends. Various changes and modifications will occur to those skilled in the art, without departing from the true scope of the invention as defined in the present disclosure.
This application claims priority from U.S. Provisional Patent Application No. 61/625,566, filed Apr. 17, 2012, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61625566 | Apr 2012 | US |