1. Field of the Invention
This invention is related to semiconductor devices used for providing electrostatic discharge (ESD) protection and, more particularly, to semiconductor devices having bipolar structures for ESD protection.
2. Background of the Invention
A semiconductor integrated circuit (IC) is generally susceptible to an electrostatic discharge (ESD) event, which refers to a phenomenon of electrical discharge of a current (positive or negative) for a short duration during which a large amount of current is provided to the IC. An ESD event may damage or destroy the IC, and protection against the ESD is necessary for the IC. A conventional scheme for ESD protection incorporates a substrate-triggered ESD protection device.
ESD protection circuit 100 is coupled to contact pad 12 to detect an ESD event and protect IC 10 against the ESD. As shown in
Also shown in
In operation, when a positive ESD appears on contact pad 12, a positive potential appears on the drain of NMOS transistor 102, creating a high reverse bias across the junction between the drain and the substrate of NMOS transistor 102. The reverse bias across the drain-substrate junction of NMOS transistor 102 generates a current through ion implantation, which flows through the substrate of NMOS transistor 102 and resistor 106. As a result, the potential at the substrate of NMOS transistor 104, or the base of BJT 108, is increased, the base-emitter junction of BJT 108 is forward-biased, and BJT 108 is turned on to conduct the ESD to ground VSS.
In addition, semiconductor substrate 202 has formed therein a plurality of diffusion regions, including P+ regions 210, 212, 214, 216, and an N+ region 21B. P+ regions 210 and 212 are formed in substrate 202 and isolated from n-wells 204 and 208 by shallow trench insulations (STIs) 220 and 222, respectively. P+ regions 214 and 216 are formed in substrate 202, and each of P+ regions 214 and 216 is adjacent to the source of a respective one of NMOS transistors 102. P+ region 214 is isolated from the source of one of the NMOS transistors 104 by STI 224, and P+ region 216 is isolated from the source of the other NMOS transistors 104 by STI 226. N+ region 218 is formed in n-well 206 and isolated from the drains of NMOS transistors 102 by STIs 228 and 230.
Referring to
In an ESD event, the ESD is received at N+ region 218 and is coupled to the drain of NMOS transistors 102 through n-well 206. A current due to ion implantation is generated through NMOS transistors 102, and flows to ground VSS through resistors 106 and P+ regions 210 and 212. As a result, the potential at the bases of BJTs 108 is increased to positive with respect to the emitters of BJTs 108. BJTs 108 are thus turned on to conduct the ESD to ground. Because the current through substrate 202, resistors 106, and P+ regions 210 and 212 triggers BJTs 108 to conduct the ESD, the current is also referred to as a trigger current.
In accordance with the present invention, there is provided a semiconductor device suitable for applications in an electrostatic discharge (ESD) protection circuit, including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, and a first doped region formed in the second well, wherein the first well, the second well, and the first doped region collectively form a parasitic bipolar junction transistor (BJT), and wherein the first well is the collector of the BJT, the second well is the base of the BJT, and the first doped region is the emitter of the BJT.
Also in accordance with the present invention, there is provided a semiconductor device suitable for applications in an electrostatic discharge (ESD) protection circuit, including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, a third well formed in the substrate, and a first doped region formed in the second well, wherein the first well, the second well, and the first doped region collectively form a first parasitic bipolar junction transistor (BJT), and wherein the second well, the third well, and the first doped region collectively form a second parasitic BJT, and wherein the first well is the collector of the first BJT, the third well is the collector of the second BJT, the second well is the base of both of the first and the second BJTs, and the first doped region is the emitter of both of the first and the second BJTs.
Further in accordance with the present invention, there is provided a semiconductor device suitable for applications in an electrostatic discharge (ESD) protection circuit, including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, a third well formed in the substrate, a first doped region formed in the second well, and a second doped region formed in the second well, wherein the first well, the second well, and the first doped region collectively form a first parasitic bipolar junction transistor (BJT), and the second well, the third well, and the second doped region collectively form a second parasitic BJT, and wherein the first well is the emitter of the first BJT, the third well is the emitter of the second BJT, the second well is the base of both of the first and the second BJTs, the first doped region is the collector the first BJT, and the second doped region is the collector of the second BJT.
Still in accordance with the present invention, there is provided a method of providing electrostatic discharge (ESD) protections, including providing a semiconductor substrate, providing a first well in the substrate, providing a second well in the substrate, providing a first doped region in the second well, providing a second doped region in the substrate for receiving an ESD in an ESD event, wherein the second doped region is a contact to the first well, providing a third doped region in the substrate, and providing an ESD detection circuit for detecting the ESD, wherein the first well, the second well, and the first doped region are configured to form a parasitic bipolar junction transistor (BJT), and wherein the ESD detection circuit provides a trigger current or trigger voltage to the third doped region, which triggers the BJT to discharge the ESD.
Still further in accordance with the present invention, there is provided a method of providing electrostatic discharge (ESD) protections, including providing a semiconductor substrate, providing a first parasitic bipolar junction transistor (BJT) in the substrate, wherein the first BJT has an emitter, a collector, and a base, wherein the collector of the first BJT is coupled to receive an ESD in an ESD event, providing a second BJT in the substrate, wherein the second BJT has an emitter, a collector, and a base, wherein the collector of the BJT is coupled to receive the ESD, and providing an ESD detection circuit for detecting the ESD, wherein the ESD detection circuit provides a trigger current or trigger voltage in the ESD event to turn on the first BJT and the second BJT to discharge the ESD, wherein a well formed in the substrate is the base of both the first BJT and the second BJT, and the first BJT and the second BJT are triggered in the ESD event by the trigger current flowing through the well.
Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the objects, advantages, and principles of the invention.
In the drawings,
Diffusion regions 312, 314, 316, 318, and 320 are electrically isolated from each other by a plurality of isolation regions 322, 324, 326, and 328. Isolation region 322 electrically isolates N+ region 312 from P+ region 318; isolation region 324 electrically isolates P+ region 318 from N+ region 314; isolation region 326 electrically isolates N+ region 314 from P+ region 320; and isolation region 328 electrically isolates P+ region 320 from N+ region 316. In one aspect, isolation regions 322, 324, 326, and 328 are shallow trench isolations (STIs). In another aspect, isolation regions 322, 324, 326, and 328 are local oxidation of silicon (LOCOS) regions.
Also shown in
In an exemplary application of bipolar device 300, N+ region 312 is coupled to a contact pad 332 to receive an electrostatic discharge (ESD) current in an ESD event, and N+ region 314 and P+ region 320 are both grounded. An ESD detection circuit 334 is coupled between contact pad 332 and P+ region 318 to detect the ESD. One terminal (not numbered) of ESD detection circuit 334 is grounded. N+ region 316 is also coupled to contact pad 332. ESD detection circuit 334 may be implemented with any known ESD detection scheme and the details of which will not be described herein.
For illustration purposes, in the following descriptions of the embodiments of the present application, an ESD current flowing from the contact pad, such as contact pad 332, into the bipolar device, such as 300, is referred to as a positive ESD current, and an ESD current flowing from the bipolar device to the contact pad is referred to as a negative ESD current.
In operation, when a positive ESD current is received at contact pad 332, ESD detection circuit 334 detects the ESD and provides a trigger current to P+ region 318. The trigger current flows through P-well 310 to P+ region 320. The trigger current generates a positive potential due to the non-zero parasitic resistance of P-well 310 from P+ region 318 to P+ region 320 and triggers, or turns on, BJT 330 to conduct the positive ESD current from N+ region 312 to N+ region 314, which, in turn, is coupled to ground.
Referring again to
As discussed above, bipolar device 300 as shown in
Referring to
Diffusion regions 412, 414, 416, 418, and 420 are electrically isolated from each other by a plurality of isolation regions 422, 424, 426, and 428. Isolation region 422 electrically isolates N+ region 412 from P+ region 418; isolation region 424 electrically isolates P+ region 418 from N+ region 414; isolation region 426 electrically isolates N+ region 414 from P+ region 420; and isolation region 428 electrically isolates P+ region 420 from P+ region 416. In one aspect, isolation regions 422, 424, 426, and 428 are STIs. In another aspect, isolation regions 422, 424, 426, and 428 are LOCOS.
P-well 410, N-well 408, and P+ region 420 collectively form a parasitic PNP BJT 430, wherein P-well 410 is the collector of BJT 430, N-well 408 is the base of BJT 430, and P+ region 420 is the emitter of BJT 430. P+ region 418 is the contact to P-well 410, or the collector of BJT 430, and N+ region 414 is a contact to N-well 408, or the base of BJT 430. N+ region 416 is also a contact to N-well 408, but is spaced apart from N+ region 414.
In an exemplary application of bipolar device 400, P+ region 418 is coupled to a contact pad 432 to receive an ESD current in an ESD event, and N+ regions 412 and 416 and P+ region 420 are all connected to a positive power supply VDD. An ESD detection circuit 434 is coupled between contact pad 432 and N+ region 414 to detect the ESD. A terminal of ESD detection circuit 434 is also connected to VDD.
In an ESD event, when a negative ESD current appears on contact pad 432, ESD detection circuit 434 detects the ESD and generates a trigger current from N+ region 414. The trigger current flows through N-well 408 from N+ region 416, which is connected to VDD, to N+ region 414. Because of the non-zero parasitic resistance of N-well 408, the potential near N+ region 414 is lowered to a relative negative value with respect to VDD. As a result, BJT 430 is triggered, or turned on, to conduct the negative ESD current from P+ region 418 to P+ region 420, which, in turn, is connected to positive power supply VDD.
In one aspect, since a portion of N+ region 414 is formed in P-well 410, P-well 410 and P+ region 420 are formed close to each other. In other words, the effective base width of BJT 430 is very small and, therefore, the turn-on speed of BJT 430 is improved.
Also according to the present invention, the isolation regions in the first and second embodiments described above may be replaced with dummy gates, thereby further reducing the dimension of the bipolar device.
Referring to
According to the present invention, there is also provided a floating-base bipolar device suitable for providing ESD protection.
Referring to
Diffusion regions 512, 514, 516, 518, and 520 are electrically isolated from each other by a plurality of isolation regions 522, 524, 526, and 528. Isolation region 522 electrically isolates N+ region 512 from P+ region 518; isolation region 524 electrically isolates P+ region 518 from N+ region 514; isolation region 526 electrically isolates N+ region 514 from P+ region 520; and isolation region 528 electrically isolates P+ region 520 from N+ region 516. In one aspect, isolation regions 522, 524, 526, and 528 are STIs. In another aspect, isolation regions 522, 524, 526, and 528 are LOCOS.
As shown in
In an exemplary application of bipolar device 500, N+ regions 512 and 516 are both coupled to a contact pad 534 to receive an ESD current in an ESD event, and N+ region 514 is grounded. An ESD detection circuit 536 is coupled to contact pad 534 to detect the ESD, and both P+ regions 518 and 520 are coupled to ESD detection circuit 536. A terminal (not numbered) of ESD detection circuit 536 is also grounded.
In the event that a positive ESD current appears on contact pad 534, ESD detection circuit 536 detects the ESD and generates a trigger current or a trigger voltage at P+ regions 518 and 520 to turn on BJTs 530 and 532 to conduct the positive ESD current from N+ regions 512 and 516 to N+ region 514.
Consistent with a fourth embodiment of the present invention, there is also provided a floating-base bipolar device 600 including PNP BJTs for providing ESD protections. Referring to
Diffusion regions 616, 618, 620, 622, 624, 626, and 628 are electrically isolated from each other by a plurality of isolation regions 630, 632, 634, 636, 638, and 640. Isolation region 630 electrically isolates N+ region 616 from P+ region 624; isolation region 632 electrically isolates P+ region 624 from N+ region 618; isolation region 634 electrically isolates N+ region 618 from P+ region 626; isolation region 636 electrically isolates P+ region 626 from N+ region 620; isolation region 638 electrically isolates N+ region 620 from P+ region 628; and isolation region 640 electrically isolates P+ region 628 from N+ region 622. In one aspect, isolation regions 630, 632, 634, 636, 638, and 640 are STIs. in another aspect, isolation regions 630, 632, 634, 636, 638, and 640 are LOCOS.
As shown in
In an exemplary application of bipolar device 600, N+ regions 616 and 622 and P+ region 626 are all connected to a positive power supply VDD. P+ regions 624 and 628 are both coupled to a contact pad 646 to receive an ESD in an ESD event. An ESD detection circuit 648 is coupled to contact pad 646 to detect the ESD, and both N+ regions 618 and 620 are coupled to ESD detection circuit 648. A terminal (not numbered) of ESD detection circuit 648 is also connected to VDD.
When a negative ESD current appears on contact pad 646, ESD detection circuit 648 detects the ESD and generates a trigger current or a trigger voltage at N+ regions 618 and 620 to turn on BJTs 642 and 644 to conduct the negative ESD current from P+ regions 624 and 628 to P+ region 626, which, in turn, is coupled to a positive power supply.
Similarly, the isolation regions in the third and fourth embodiments may also be replaced with dummy gates to further reduce the dimension of the bipolar devices.
Accord to the present invention, there is also provided a bipolar device for providing ESD protection, wherein the bipolar device has a large area for heat dissipation, and therefore device stability is improved.
Also formed in substrate 702 are a plurality of diffusion regions, including N+ regions 712, 714, 716, and 718, and a P+ region 720, wherein N+ region 712 is formed in both N-well 706 and P-well 710, N+ regions 714 and 716 are formed in P-well 710, N+ region 718 is formed in both N-well 708 and P-well 710, and P+ region 720 is formed in P-well 710. Diffusion regions 712, 714, 716, 718, and 720 are electrically isolated from each other by a plurality of isolation regions 722, 724, 726, and 728. Isolation region 722 electrically isolates N+ region 712 from N+ region 714; isolation region 724 electrically isolates N+ region 714 from P+ region 720; isolation region 726 electrically isolates P+ region 720 from N+ regions 716; and isolation region 728 electrically isolates N+ region 716 from N+ region 718. In one aspect, isolation regions 722, 724, 726, and 728 are STIs. In another aspect, isolation regions 722, 724, 726, and 728 are LOCOS.
N+ region 714, P-well 710, and N-well 706 collectively form a parasitic NPN BJT 730, and N+ region 716, P-well 710, and N+ region 718 collectively form a parasitic NPN BJT 732, wherein N+ region 714 is the collector of BJT 730, N+ region 716 is the collector of BJT 732, P-well 710 is the base of both BJTs 730 and 732, N-well 706 is the emitter of BJT 730, and N-well 708 is the emitter of BJT 732. N+ region 712 is the contact to N-well 706, and N+ region 718 is the contact to N-well 708.
In an exemplary application of bipolar device 700, N+ regions 712 and 718 are grounded. N+ regions 714 and 716 are coupled to a contact pad 734 to receive an ESD current in an ESD event. An ESD detection circuit 736 is coupled between contact pad 734 and P+ region 720 to detect the ESD. A terminal (not numbered) of ESD detection circuit 736 is also grounded. When a positive ESD current appears on contact pad 734, ESD detection circuit 736 detects the ESD and generates a trigger current or a trigger voltage at P+ region 720, thereby turning on BJTs 730 and 732 to conduct the ESD from N+ regions 714 and 716 to N+ regions 712 and 718, respectively.
As shown in
Diffusion regions 816, 818, 820, 822, 824, 826, and 828 are electrically isolated by a plurality of isolation regions 830, 832, 834, 836, 838, and 840. Isolation region 830 electrically isolates N+ region 816 from P+ region 822; isolation region 832 electrically isolates P+ region 822 from P+ region 824; isolation region 834 electrically isolates P+ region 824 from N+ region 818; isolation region 836 electrically isolates N+ region 818 from P+ region 826; isolation region 838 electrically isolates P+ region 826 from P+ region 828; and isolation region 840 electrically isolates P+ region 828 from N+ region 820. In one aspect, isolation regions 830, 832, 834, 836, 838, and 840 are STIs. In another aspect, isolation regions 830, 832, 834, 836, 838, and 840 are LOCOS.
As shown in
In an exemplary application of bipolar device 800, N+ regions 816 and 820, and P+ regions 822 and 828 are all connected to a positive power supply VDD. P+ regions 824 and 826 are both coupled to a contact pad 846 to receive an ESD current in an ESD event. An ESD detection circuit 848 is coupled between contact pad 846 and N+ region 818 to detect the ESD. A terminal (not numbered) of ESD detection circuit 848 is also connected to VDD.
When a negative ESD current appears on contact pad 846, ESD detection circuit 848 detects the ESD and generates a trigger current or trigger voltage at N+ region 818, which then triggers or turns on BJTs 842 and 844 to conduct the negative ESD current from P+ regions 824 and 826 to P+ regions 822 and 828, respectively.
For the reasons already discussed above, the structure of bipolar device 800 also provides for a better heat dissipation and therefore the stability thereof is improved.
Furthermore, the isolation regions in bipolar devices 700 and 800 may also be replaced with dummy gates. As shown in
In one aspect, the gate of each of the gate structures 724′ and 726′ is doped with both P+ and N+ dopants, while gate structures 722′ and 728′ are both doped with N+ dopant. As indicated by the dashed circles in
Referring to
It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed process without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This is a Divisional Patent Application of U.S. patent application Ser. No. 10/727,550, filed Dec. 5, 2003, now U.S. Pat. No. 7,244,992, which claims the benefit of U.S. Provisional Patent Application No. 60/487,581, filed Jul. 17, 2003. The present application is related to, and claims the benefit of priority of, U.S. Provisional Application No. 60/487,581, filed on Jul. 17, 2003, entitled “Turn-on Efficient Bipolar Structure with Deep N-Well for On-Chip ESD Protection Design,” which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4605980 | Hartranft et al. | Aug 1986 | A |
4692781 | Rountree et al. | Sep 1987 | A |
4734752 | Liu et al. | Mar 1988 | A |
4745450 | Hartranft et al. | May 1988 | A |
4805008 | Yao et al. | Feb 1989 | A |
4807080 | Clark | Feb 1989 | A |
4819046 | Misu | Apr 1989 | A |
4855620 | Duvvury et al. | Aug 1989 | A |
4896243 | Chatterjee et al. | Jan 1990 | A |
4939616 | Rountree | Jul 1990 | A |
5001529 | Ohshima et al. | Mar 1991 | A |
5010380 | Avery | Apr 1991 | A |
5012317 | Rountree | Apr 1991 | A |
5019888 | Scott et al. | May 1991 | A |
5043782 | Avery | Aug 1991 | A |
5060037 | Rountree | Oct 1991 | A |
5077591 | Chen et al. | Dec 1991 | A |
5086365 | Lien | Feb 1992 | A |
5140401 | Ker et al. | Aug 1992 | A |
5166089 | Chen et al. | Nov 1992 | A |
5182220 | Ker et al. | Jan 1993 | A |
5218222 | Roberts | Jun 1993 | A |
5225702 | Chatterjee | Jul 1993 | A |
5239194 | Ohtani et al. | Aug 1993 | A |
5270565 | Lee et al. | Dec 1993 | A |
5272371 | Bishop et al. | Dec 1993 | A |
5274262 | Avery | Dec 1993 | A |
5289334 | Ker et al. | Feb 1994 | A |
5329143 | Chan et al. | Jul 1994 | A |
5336908 | Roberts | Aug 1994 | A |
5343053 | Avery | Aug 1994 | A |
5374565 | Hsue et al. | Dec 1994 | A |
5400202 | Metz et al. | Mar 1995 | A |
5453384 | Chatterjee | Sep 1995 | A |
5465189 | Polgreen et al. | Nov 1995 | A |
5495118 | Kinoshita et al. | Feb 1996 | A |
5502328 | Chen et al. | Mar 1996 | A |
5519242 | Avery | May 1996 | A |
5539327 | Shigehara et al. | Jul 1996 | A |
5581104 | Lowrey et al. | Dec 1996 | A |
5629544 | Voldman et al. | May 1997 | A |
5631793 | Ker et al. | May 1997 | A |
5637900 | Ker et al. | Jun 1997 | A |
5637901 | Beigel et al. | Jun 1997 | A |
5646808 | Nakayama | Jul 1997 | A |
5654862 | Worley et al. | Aug 1997 | A |
5674761 | Chang et al. | Oct 1997 | A |
5719737 | Maloney | Feb 1998 | A |
5731614 | Ham | Mar 1998 | A |
5744842 | Ker | Apr 1998 | A |
5754381 | Ker | May 1998 | A |
5807791 | Bertin et al. | Sep 1998 | A |
5811857 | Assaderaghi et al. | Sep 1998 | A |
5818088 | Ellis | Oct 1998 | A |
5824573 | Zhang et al. | Oct 1998 | A |
5874763 | Ham | Feb 1999 | A |
5898206 | Yamamoto | Apr 1999 | A |
5907462 | Chatterjee et al. | May 1999 | A |
5910874 | Iniewski et al. | Jun 1999 | A |
5932918 | Krakauer | Aug 1999 | A |
5940258 | Duvvury | Aug 1999 | A |
5990520 | Noorlag et al. | Nov 1999 | A |
6015992 | Chatterjee et al. | Jan 2000 | A |
6034397 | Voldman | Mar 2000 | A |
6034552 | Chang et al. | Mar 2000 | A |
6057579 | Hsu et al. | May 2000 | A |
6072219 | Ker et al. | Jun 2000 | A |
6081002 | Amerasekera et al. | Jun 2000 | A |
6097066 | Lee et al. | Aug 2000 | A |
6242763 | Chen et al. | Jun 2001 | B1 |
6281527 | Chen | Aug 2001 | B1 |
6306695 | Lee et al. | Oct 2001 | B1 |
6320231 | Ikehashi et al. | Nov 2001 | B1 |
6323074 | Jiang et al. | Nov 2001 | B1 |
6348724 | Koomen et al. | Feb 2002 | B1 |
6420221 | Lee et al. | Jul 2002 | B1 |
6469354 | Hirata | Oct 2002 | B1 |
6521952 | Ker et al. | Feb 2003 | B1 |
6559508 | Lin et al. | May 2003 | B1 |
6566715 | Ker et al. | May 2003 | B1 |
6573566 | Ker et al. | Jun 2003 | B2 |
6576958 | Ker et al. | Jun 2003 | B2 |
6583972 | Verhaege et al. | Jun 2003 | B2 |
6642088 | Yu | Nov 2003 | B1 |
20020130390 | Ker et al. | Sep 2002 | A1 |
20040065895 | Lai et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
5-3173 | Jan 1993 | JP |
10-229132 | Aug 1998 | JP |
11-274404 | Oct 1999 | JP |
2000-277700 | Oct 2000 | JP |
2001-77305 | Mar 2001 | JP |
9014691 | Nov 1990 | WO |
9105371 | Apr 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20080044969 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
60487581 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10727550 | Dec 2003 | US |
Child | 11768814 | US |