This application is a 35 USC §371 US National Stage filing of International Application No. PCT/US2012/063054 filed on Nov. 1, 2012.
The present disclosure is directed to passenger conveyors, and more particularly, to turnaround mechanisms for pallet type passenger conveyors.
Moving walkways are typically constructed in one of two basic styles, either pallet type or moving belt type. A moving belt type moving walkway typically includes a metal mesh or rubber belt disposed over a series of rollers. A pallet type moving walkway, on the other hand, includes a continuous series of pallets joined together to form a walkway.
Pallet-type moving walkways generally include a truss assembly, which houses a drive mechanism that drives the pallets. Specifically, the pallets are fixed to a pallet chain that includes a plurality of interconnected rollers. The pallet chain is engaged with a pallet chain roller track and is operatively connected to the drive mechanism, such as one or more drive sprockets. As the drive mechanism drives the pallet chain, the pallets move along the pallet chain roller track from a passenger side to a return side located below the passenger side. To transition from the passenger side to the return side a turnaround mechanism is used. The walkway assembly including the truss assembly, drive mechanism, the turnaround mechanism and the return side of the walkway are typically located in a pit constructed for that purpose. Furthermore, depending upon whether the pallets turn up-side-down or maintain their orientation at the turnaround mechanism, the height of the pit may vary.
Moving walkways with such a pit construction have several disadvantages. For example, the height difference between the surrounding floor level and the passenger portion of the pallets (i.e. pallet height) may sometimes require relatively steep and/or lengthy ramps at the ends of the moving walkway for passenger comfort and handicapped access. In addition, parallel moving walkways, operating in opposite directions, typically require two pits, two drive mechanisms and two pallet bands, thereby further adding expense and space requirements for installation of the moving walkways.
Accordingly, it would be beneficial to have a moving walkway that may either not need a pit in the floor or the height of the pit is minimized. In so doing, the moving walkway may, therefore, be mounted either on finished, existing floors, or in foreseen openings of a floating screed without impacting the structure of floors (concrete ceilings, beams, etc.). It would also be beneficial if a moving walkway with a reduced height between the passenger side of the moving walkway and the surrounding floor surface is designed for passenger comfort, handicapped access, and/or the aesthetics of the landing design, while maintaining the functionality, simplicity, and reliability of its components.
In accordance with one aspect of the present disclosure, a turnaround mechanism for a passenger conveyor is disclosed. The turnaround mechanism may include a turnaround track for facilitating a smooth transition of a plurality of pallets between a passenger side and a return side, each of the plurality of pallets may have a front end portion engaging the turnaround track and a rear end portion connected to a pallet chain, the pallet chain riding on a pallet chain roller track. The turnaround mechanism may also include a track exchanger engageable with the front edge portion of each of the plurality of pallets for transitioning the front edge portion of each of the plurality of pallets between the passenger side and the return side, each of the plurality of pallets maintaining a generally horizontal orientation during the transitioning.
In accordance with another aspect of the present disclosure, a method for turning pallets in a passenger conveyor is disclosed. The method may include providing (a) a pallet chain riding on a pallet chain roller track; (b) a turnaround track for facilitating a transition of a plurality of pallets between a passenger side and a return side thereof; and (c) a track exchange mechanism having a track exchanger. The method may also include supporting each of the plurality of pallets on the turnaround track and the pallet chain such that a front edge portion of each of the plurality of pallets engages the turnaround track, engaging the front end portion of each of the plurality of pallets into the track exchange mechanism and transitioning each of the plurality of pallets between the passenger side and the return side.
In accordance with yet another aspect of the present disclosure, a passenger conveyor is disclosed. The passenger conveyor may include a pallet chain riding on a pallet chain roller track in a continuous loop having a passenger side and a return side and a plurality of pallets, each of the plurality of pallets connected to the pallet chain and having a front edge. The passenger conveyor may also include a turnaround track connected between the pallet roller track and continuously travelling between the passenger and the return sides, the front edge portion of each of the plurality of pallets engaging the turnaround track and a track exchange mechanism having a track exchanger. The passenger conveyor may further include a triggering system to rotate the lower lever for fixing a position of the upper lever and setting a default position of the track exchanger.
Other advantages and features of the disclosed apparatus and method will be described in greater detail below. It will also be noted here and elsewhere that the apparatus or method disclosed herein may be suitably modified to be used in a wide variety of applications by one of ordinary skill in the art without undue experimentation.
For a more complete understanding of the disclosed apparatus and method reference should be made to the embodiments illustrated in greater detail in the accompanying drawings, wherein:
It should be understood that the drawings are not necessarily to scale and that the disclosed embodiments are sometimes illustrated diagrammatically and in partial views. In certain instances, details which are not necessary for an understanding of the disclosed device or method which render other details difficult to perceive may have been omitted. It should be understood, of course, that this disclosure is not limited to the particular embodiments illustrated herein.
Referring now to
As shown, the moving walkway 2 is a pallet type moving walkway having a plurality of pallets 4 (only one of which is shown). Each of the pallets 4 may have a pair of rollers 6 disposed on both sides of a front end portion 8 and a pair of pins 10 (See
By virtue of connecting the rear end portion 12 of each of the pallets 4 to the pallet chain 16 (via the pins 10) and riding the front end portion 8 on the turnaround track 14, about fifty percent (50%) of the pallet weight may be supported by the turnaround track, while about fifty percent (50%) of the pallet weight may be supported by the pallet chain during turnaround of the pallets between a passenger side 24 (e.g., the side on which the passengers ride) and a return side 26 (e.g., the side opposing the passenger side), thereby minimizing an inertia effect during the turnaround and reducing vibrations caused at a turnaround portion 28 of the moving walkway 2. Furthermore, by connecting the rear end portion 12 of the pallets 4 to the pallet chain 16, the pallet chain may provide a driving force to make the turnaround with a minimal turnaround radius of the pallets and the pallet chain roller track 18. Turnaround of the pallets 4 is described in greater detail below.
With respect to the turnaround track 14 and the pallet roller track 18, each side of the turnaround track may form a continuous pathway between an upper pallet roller track 30 on the passenger side 24 and a lower pallet roller track 32 on the return side 26 of the pallet roller track 18. The turnaround track 14 may be utilized, as described further below, to transfer the front end portion 8 of each of the pallets 4 between the upper pallet roller track 30 and the lower pallet roller track 32 smoothly at the turnaround portion 28 while substantially maintaining the orientation of the pallets (e.g., without turning the pallets upside down), by moving the pallets in a horizontal direction. It will be understood that as the pallets 4 transition from the lower pallet roller track 32 to the upper pallet roller track 30, the pallets may teeter a little bit, although the orientation of those pallets may be generally maintained. Additionally, the turnaround track 14 may extend further than the pallet roller track 18 and the portion of the turnaround track beyond the pallet roller track may be somewhat inclined to facilitate the turnaround of the pallets 4. The incline of the turnaround track 14 may be determined mainly by the length of the pallets 4 and the height between the upper and the lower pallet roller tracks 30 and 32, respectively.
Referring still to
Furthermore, as shown in
Turning now to
Referring specifically now to
Next, as shown in
After the rollers 6 pass through the track exchanger 36 and land on the return side 26 of the turnaround track 14, the track exchanger may return to its initial default up position by the recovery torque of the rotational spring 46 after the rollers exit the track exchanger. Specifically and as discussed above, the track exchanger 36 may be connected to upper lever 38 with the rotational spring 46, both of which may be able to rotate around the hinge joint axis 44. Rotation of the upper lever 38 may be determined by the connection with the lower lever 40 during operation. Therefore, the track exchanger 34 may be able to rotate free due to the contact with the rollers 6 and return to its original position after the roller no longer contact the track exchanger. Further movement of the pallets 4 to the right side on the turnaround track 14 may be prevented by virtue of the rear end portion 12 of the pallets 4 being connected to the pallet chain 16 driving on a pallet chain roller track 57 and the pallet chain roller track being shorter than the turnaround track. As a result of continuous motion of the pallet chain 16 on the pallet chain roller track 57 from the passenger side 24 to the return side, the pallet chain slowly pulls the pallets along with it and the pallets start to move in a direction indicated by arrow 58 on the return side 26 of the turnaround track 14.
Turning now to
After the rollers 6 pass through the track exchanger 36, the track exchanger may return to its default down position due to the recovery torque of the rotational spring 46 after the rollers exit the track exchanger. Additionally, further movement of the pallets 4 may be avoided due to the rear end portion 12 of the pallets being connected to the pallet chain 16 and the pallet chain roller track 57 being shorter than the turnaround track 14. Then, due to a continuous progress of the pallet chain 16 and the pallets 4 being connected to the pallet chain, as the pallet chain rides along the pallet chain roller track 57, the pallet chain pulls the pallet connected thereto along and the pallet is pulled from the return side 26 of the turnaround track 14 to the passenger side of the turnaround track in a direction indicated by arrow 64.
Referring now to
Turning first to
In operation, as the pallet chain 16 circulates, the pallet chain sprocket 68 and the bevel wheel 70 rotate in the same direction as the pallet chain. Rotation of the pallet chain sprocket 68 and the bevel wheel 70 may cause the transmission shaft 72 connected to the bevel wheel to rotate, causing the slider 74 to move in left and right directions due to the geared arrangement therebetween. This left and right motion of the slider 74 may in turn cause the connection link 66 connected to the slider to follow the left and right motion of the slider. By virtue of moving the connection link 66, position of the lower lever 40 connected to the connection link may be varied and as discussed above, by varying the position of the lower lever, the position of the upper lever 38 may be fixed. Fixing the position of the upper lever 38 may determine the default position of the track exchanger 36, as further described below. It will be understood that the movement of the track exchanger 36 between the up position and the down position occurs when the operating direction of the pallet chain 16 is changed. While travelling either from the passenger side 24 to the return side 26 or vice-versa, the track exchanger 36 remains at one default position. In other words, the movement of the sprocket 68 by the pallet chain 16 correctly puts the track exchanger 34 into the proper default position for the direction of movement of the pallet chain.
Turning to
Specifically, and as mentioned above, the slider 74 may be connected to the transmission shaft 72 via a geared arrangement. In at least some embodiments, the geared arrangement may be a worm gear arrangement having a limited number of worm teeth 82 on the slider and the transmission shaft. The number of worm teeth 82 on the slider 74 and the transmission shaft 72 may depend upon the horizontal distance (left or right) that the slider 74 may be required to move. Relatedly, the worm teeth 82 may be configured to move the slider 74 towards the left when the pallet chain 16 is moving from the passenger side 24 to the return side 26 and to move to the right when the pallet chain is moving from the return side 26 to the passenger side 24. By virtue of configuring the slider 74 and the transmission shaft 72 with a limited number of worm teeth 82 and by configuring those worm teeth to move in the appropriate direction, it may be ensured that the motion of the slider does not exceed a certain horizontal distance and the correct default position of the track exchanger 36 for that particular travel direction of the pallet chain 16 may be set.
Thus, when the slider 74 moves towards the left side due to the pallet chain 16 travelling from the passenger side 24 to the return side 26, the connection link 66 connected to the slider may move towards the left as well in a direction indicated by arrow 84. Movement of the connection link 66 may cause the lower lever 40 to rotate in a clockwise direction, thereby fixing the position of the upper lever 38 due to the toothed arrangement 48 between the upper and the lower levers. The upper lever 38 may rotate in a counter-clockwise direction indicated by arrow 86. Fixing the position of the upper lever 38 may locate the default position of the track exchanger 36 when the pallets 4 are moving from the passenger side 24 to the return side 26. As discussed above, the default position for the track exchanger 36 when the pallets 4 are moving from the passenger side 24 to the return side 26 is in an up position, as shown in
It will be understood that in some instances, the transmission shaft 72 may continue to rotate even if the engagement of the worm teeth 82 between the transmission shaft and the slider has ended and the slider 74 may continue to move towards the left side (or right side when the pallets 4 are moving from the return side 26 to the passenger side 24, described below) due to inertia. In such cases, to prevent further movement of the slider 74 when the engagement of the worm teeth 82 has ended, the spring 76 connected between the slider and a truss may be utilized in order to limit the horizontal distance of the slider. The spring 76 may be set to generate no force when the worm teeth 82 on the slider 74 locate in the middle of the worm teeth on the transmission shaft 72.
Furthermore, a pair of mechanical triggering systems, one on each side of the pallet chain roller track 57, may be utilized in some embodiments. Alternatively and as shown, only one of the mechanical triggering system may be used to rotate the lower lever 40 connected to the connection link 66 and rotation of that lower lever may cause the lower lever of the other side to rotate via the lever synchronization shaft (which may rotate when the lower lever connected to the connection link rotates).
Turning now to
Referring now to
The operation (e.g., direction of rotation) of the motor 104 may be controlled by a controller (not shown). Depending upon the direction of travel of the pallet chain 16, the controller may control the rotation of the motor 104. For example, when the pallet chain 16 is travelling from the passenger side 24 to the return side 26, the controller may instruct the motor 104 to rotate in a certain (e.g., clockwise or counter-clockwise) direction, while when the pallet chain is moving from the return side to the passenger side, the controller may instruct the motor to rotate in an opposite direction. By virtue of rotating the motor 104, the shaft 102 connected to the motor may be made to rotate in the same direction as the motor. Rotation of the shaft 102 may alter the geared arrangement between the wheel 100 and the shaft, causing the lever synchronization shaft 42 to rotate as well, which in turn may cause the lower lever 40 of both sides to rotate for fixing the position of the upper lever 38, in a manner described above. As also described above, by fixing the position of the upper lever 38, the default position of the track exchanger 36 may be set to an up position when the pallets 4 are moving from the passenger side 24 to the return side 26 and to a down position when the pallets are moving from the return side to the passenger side.
Referring now to
In general, the present disclosure sets forth a turnaround mechanism for a moving walkway. The turnaround mechanism may include a turnaround track connected to a pallet roller track and having a track exchange mechanism. The track exchange mechanism may in turn include upper and lower levers connected via geared arrangement as well as a lever synchronization shaft connecting the lower levers on both sides of the turnaround track. The track exchange mechanism may also include a track exchanger connected to the upper lever via a rotational spring, such that by fixing the position of the upper lever, a default position of the track exchanger may be set. The position of the upper lever may be fixed by rotating the lower levers. A mechanical, electrical or a combination of the two triggering systems may be employed for rotating the lower levers.
The turnaround track and the track exchange mechanism may be configured such that a front end of the pallets of the moving walkway follow the turnaround track, while a rear end of the pallets are connected to a pallet chain and ride on the pallet chain roller track. Advantageously, the track exchange mechanism may transition the pallets between a passenger side and a return side, while the rear end continues to ride on the pallet chain roller track, thereby facilitating a turnaround without changing the orientation of the pallets at the turnaround and providing a pit free design and a flat turnaround system.
Furthermore, the proposed turnaround mechanism needs less energy consumption to execute the turnaround movement compared to conventional turnaround mechanisms which carry complete pallet weight. As discussed above, each pallet is engaged with both the turnaround track as well as the pallet chain. The pallet chain only carries about fifty percent (50%) of the pallet weight, while rest (about fifty percent (50%)) of the pallet weight is continuously carried by the turnaround track, thereby minimizing the inertia effect of the pallets in the turnaround area on the movement of the pallet chain for providing energy savings.
Moreover, combination of circumferential movement and horizontal movement of the pallets during turnaround minimizes the vibration impact caused by the pallet inertia during turnaround motion. Specifically, the circumferential movement arises on one side of the pallets connected to the pallet chain, and horizontal movement arises on the other side of pallets by passing through the turnaround mechanism. Therefore, the turnaround mechanism minimizes vibrations as well as inertia impact during vertical transition movement. Conventional technologies have only circumferential movement of the pallets in the turnaround area creating vibrations on the pallet chain roller track. Additionally, with the above turnaround mechanism, the pallets can be designed with longer pallet lengths to reduce the manufacturing cost of the pallets.
It will be understood that while the turnaround mechanism has been described above in relation to a passenger moving walkway, the teachings of the present disclosure may be applicable to other types of walkways, including cargo walkways and escalators.
While only certain embodiments have been set forth, alternative embodiments and various modifications will be apparent from the above descriptions to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/063054 | 11/1/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/070187 | 5/8/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6234295 | Ogawa | May 2001 | B1 |
6640958 | Postlmayr | Nov 2003 | B2 |
7353932 | Aulanko | Apr 2008 | B2 |
7568571 | Ogimura | Aug 2009 | B2 |
8083048 | Ishikawa | Dec 2011 | B2 |
20060070846 | Andreas et al. | Apr 2006 | A1 |
20110220455 | Mustalahti et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
2138430 | Dec 2009 | EP |
1019990049125 | Jul 1999 | KR |
2007-0012398 | Jan 2007 | KR |
Entry |
---|
Office Action issued in corresponding Japanese Patent Application No. 2014-512811; Action dated Nov. 7, 2014. |
International Search Report for application PCT/US2012/063054, mailed Aug. 21, 2013, 3 pages. |
Written Opinion for application PCT/US2012/063054, mailed Aug. 21, 2013, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20150284217 A1 | Oct 2015 | US |