Many people are turning to the promise of artificial reality (“XR”): XR worlds expand users' experiences beyond their real world, allow them to learn and play in new ways, and help them connect with other people. An XR world becomes familiar when its users customize it with particular environments and objects that interact in particular ways among themselves and with the users. As one aspect of this customization, users may choose a familiar environmental setting to anchor their world, a setting called the “skybox.” The skybox is the distant background, and it cannot be touched by the user, but in some implementations it may have changing weather, seasons, night and day, and the like. Creating even a static realistic skybox is beyond the abilities of many users.
The techniques introduced here may be better understood by referring to the following Detailed Description in conjunction with the accompanying drawings, in which like reference numerals indicate identical or functionally similar elements.
Aspects of the present disclosure are directed to techniques for building a skybox for an XR world from a user-selected 2D image. The 2D image is split into multiple portions. Each portion is mapped to an area on the interior of a virtual enclosed 3D shape. A generative adversarial network then interpolates from the information in areas mapped from the portions of the 2D image to fill in at least some of the unmapped areas of the interior of the 3D shape. When complete, the 3D shape becomes the skybox of the user's XR world.
This process is illustrated in conjunction with
The top of
In
In
In some implementations, the work of the generative adversarial network is done when the interpolation of
In
From the trimmed portions added in
The completed cube 108 is shown in
At block 202, process 200 receives a 2D image, such as the image 100 in
At block 204, process 200 splits the received image 100 into at least two portions.
At block 206, process 200 creates a panoramic image from the split image. This can include swapping the positions of the image along the split line, spreading them apart and having a GAN fill in the area between them. In some cases, this can include mapping the portions resulting from the split onto separate areas on the interior of a 3D space. For the example if the 3D space is a virtual cube 108, the mappings need not completely fill the interior faces of the cube 108. In any case, the portions are mapped so that the edges of the portions at the split line(s) 102 match up with one another. For the example of
At block 208, process 200 invokes a generative adversarial network to interpolate and fill in areas of the interior of the 3D shape not already mapped from the portions of the 2D image. This may be done in steps with the generative adversarial network mapping always interpolating into the space between two or more known edges. In the cube 108 example of
Process 200 can then take a next step by interpolating from the edges of the already mapped areas into any unmapped areas. This process may continue through several steps with the generative adversarial network always interpolating between known information to produce realistic results. Following the example result of
The step by step interpolative process of the generative adversarial network described above need not always continue until the entire of the interior of the 3D shape is filled in. For example, if the XR world includes an application that creates sky effects for the skybox, then the sky need not be filled in by the generative adversarial network but could be left to that application. In some cases, the ground beneath the user need not be filled in as the user's XR world may has its own ground.
At block 210, the mapped interior of the 3D shape is used as a skybox in the user's XR world.
Embodiments of the disclosed technology may include or be implemented in conjunction with an artificial reality system. Artificial reality or extra reality (XR) is a form of reality that has been adjusted in some manner before presentation to a user, which may include, e.g., virtual reality (VR), augmented reality (AR), mixed reality (MR), hybrid reality, or some combination and/or derivatives thereof. Artificial reality content may include completely generated content or generated content combined with captured content (e.g., real-world photographs). The artificial reality content may include video, audio, haptic feedback, or some combination thereof, any of which may be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to the viewer). Additionally, in some embodiments, artificial reality may be associated with applications, products, accessories, services, or some combination thereof, that are, e.g., used to create content in an artificial reality and/or used in (e.g., perform activities in) an artificial reality. The artificial reality system that provides the artificial reality content may be implemented on various platforms, including a head-mounted display (HMD) connected to a host computer system, a standalone HMD, a mobile device or computing system, a “cave” environment or other projection system, or any other hardware platform capable of providing artificial reality content to one or more viewers.
“Virtual reality” or “VR,” as used herein, refers to an immersive experience where a user's visual input is controlled by a computing system. “Augmented reality” or “AR” refers to systems where a user views images of the real world after they have passed through a computing system. For example, a tablet with a camera on the back can capture images of the real world and then display the images on the screen on the opposite side of the tablet from the camera. The tablet can process and adjust or “augment” the images as they pass through the system, such as by adding virtual objects. “Mixed reality” or “MR” refers to systems where light entering a user's eye is partially generated by a computing system and partially composes light reflected off objects in the real world. For example, a MR headset could be shaped as a pair of glasses with a pass-through display, which allows light from the real world to pass through a waveguide that simultaneously emits light from a projector in the MR headset, allowing the MR headset to present virtual objects intermixed with the real objects the user can see. “Artificial reality,” “extra reality,” or “XR,” as used herein, refers to any of VR, AR, MR, or any combination or hybrid thereof.
Previous systems do not support non-tech-savvy users in creating a skybox for their XR world. Instead, many users left the skybox blank or choose one ready made. Lacking customizability, these off-the-shelf skyboxes made the user's XR world look foreign and thus tended to disengage users from their own XR world. The skybox creation systems and methods disclosed herein are expected to overcome these deficiencies in existing systems. Through the simplicity of its interface (the user only has to provide a 2D image), the skybox creator helps even unsophisticated users to add a touch of familiarity or of exoticness, as they choose, to their world. There is no analog among previous technologies for this ease of user-directed world customization. By supporting every user's creativity, the skybox creator eases the entry of all users into the XR worlds, thus increasing the participation of people in the benefits provided by XR, and, in consequence, enhancing the value of the XR worlds and the systems that support them.
Several implementations are discussed below in more detail in reference to the figures.
Computing system 300 can include one or more processor(s) 310 (e.g., central processing units (CPUs), graphical processing units (GPUs), holographic processing units (HPUs), etc.) Processors 310 can be a single processing unit or multiple processing units in a device or distributed across multiple devices (e.g., distributed across two or more of computing devices 301-303).
Computing system 300 can include one or more input devices 320 that provide input to the processors 310, notifying them of actions. The actions can be mediated by a hardware controller that interprets the signals received from the input device and communicates the information to the processors 310 using a communication protocol. Each input device 320 can include, for example, a mouse, a keyboard, a touchscreen, a touchpad, a wearable input device (e.g., a haptics glove, a bracelet, a ring, an earring, a necklace, a watch, etc.), a camera (or other light-based input device, e.g., an infrared sensor), a microphone, or other user input devices.
Processors 310 can be coupled to other hardware devices, for example, with the use of an internal or external bus, such as a PCI bus, SCSI bus, or wireless connection. The processors 310 can communicate with a hardware controller for devices, such as for a display 330. Display 330 can be used to display text and graphics. In some implementations, display 330 includes the input device as part of the display, such as when the input device is a touchscreen or is equipped with an eye direction monitoring system. In some implementations, the display is separate from the input device. Examples of display devices are: an LCD display screen, an LED display screen, a projected, holographic, or augmented reality display (such as a heads-up display device or a head-mounted device), and so on. Other I/O devices 340 can also be coupled to the processor, such as a network chip or card, video chip or card, audio chip or card, USB, firewire or other external device, camera, printer, speakers, CD-ROM drive, DVD drive, disk drive, etc.
In some implementations, input from the I/O devices 340, such as cameras, depth sensors, IMU sensor, GPS units, LiDAR or other time-of-flights sensors, etc. can be used by the computing system 300 to identify and map the physical environment of the user while tracking the user's location within that environment. This simultaneous localization and mapping (SLAM) system can generate maps (e.g., topologies, girds, etc.) for an area (which may be a room, building, outdoor space, etc.) and/or obtain maps previously generated by computing system 300 or another computing system that had mapped the area. The SLAM system can track the user within the area based on factors such as GPS data, matching identified objects and structures to mapped objects and structures, monitoring acceleration and other position changes, etc.
Computing system 300 can include a communication device capable of communicating wirelessly or wire-based with other local computing devices or a network node. The communication device can communicate with another device or a server through a network using, for example, TCP/IP protocols. Computing system 300 can utilize the communication device to distribute operations across multiple network devices.
The processors 310 can have access to a memory 350, which can be contained on one of the computing devices of computing system 300 or can be distributed across of the multiple computing devices of computing system 300 or other external devices. A memory includes one or more hardware devices for volatile or non-volatile storage, and can include both read-only and writable memory. For example, a memory can include one or more of random access memory (RAM), various caches, CPU registers, read-only memory (ROM), and writable non-volatile memory, such as flash memory, hard drives, floppy disks, CDs, DVDs, magnetic storage devices, tape drives, and so forth. A memory is not a propagating signal divorced from underlying hardware; a memory is thus non-transitory. Memory 350 can include program memory 360 that stores programs and software, such as an operating system 362, a Skybox creator 364 that works from a 2D image, and other application programs 366. Memory 350 can also include data memory 370 that can include, e.g., parameters for running an image-converting generative adversarial network, configuration data, settings, user options or preferences, etc., which can be provided to the program memory 360 or any element of the computing system 300.
Some implementations can be operational with numerous other computing system environments or configurations. Examples of computing systems, environments, and/or configurations that may be suitable for use with the technology include, but are not limited to, XR headsets, personal computers, server computers, handheld or laptop devices, cellular telephones, wearable electronics, gaming consoles, tablet devices, multiprocessor systems, microprocessor-based systems, set-top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, or the like.
The electronic display 445 can be integrated with the front rigid body 405 and can provide image light to a user as dictated by the compute units 430. In various embodiments, the electronic display 445 can be a single electronic display or multiple electronic displays (e.g., a display for each user eye). Examples of the electronic display 445 include: a liquid crystal display (LCD), an organic light-emitting diode (OLED) display, an active-matrix organic light-emitting diode display (AMOLED), a display including one or more quantum dot light-emitting diode (QOLED) sub-pixels, a projector unit (e.g., microLED, LASER, etc.), some other display, or some combination thereof.
In some implementations, the HMD 400 can be coupled to a core processing component such as a personal computer (PC) (not shown) and/or one or more external sensors (not shown). The external sensors can monitor the HMD 400 (e.g., via light emitted from the HMD 400) which the PC can use, in combination with output from the IMU 415 and position sensors 420, to determine the location and movement of the HMD 400.
The projectors can be coupled to the pass-through display 458, e.g., via optical elements, to display media to a user. The optical elements can include one or more waveguide assemblies, reflectors, lenses, mirrors, collimators, gratings, etc., for directing light from the projectors to a user's eye. Image data can be transmitted from the core processing component 454 via link 456 to HMD 452. Controllers in the HMD 452 can convert the image data into light pulses from the projectors, which can be transmitted via the optical elements as output light to the user's eye. The output light can mix with light that passes through the display 458, allowing the output light to present virtual objects that appear as if they exist in the real world.
Similarly to the HMD 400, the HMD system 450 can also include motion and position tracking units, cameras, light sources, etc., which allow the HMD system 450 to, e.g., track itself in 3DoF or 6DoF, track portions of the user (e.g., hands, feet, head, or other body parts), map virtual objects to appear as stationary as the HMD 452 moves, and have virtual objects react to gestures and other real-world objects.
In various implementations, the HMD 400 or 450 can also include additional subsystems, such as an eye tracking unit, an audio system, various network components, etc., to monitor indications of user interactions and intentions. For example, in some implementations, instead of or in addition to controllers, one or more cameras included in the HMD 400 or 450, or from external cameras, can monitor the positions and poses of the user's hands to determine gestures and other hand and body motions. As another example, one or more light sources can illuminate either or both of the user's eyes and the HMD 400 or 450 can use eye-facing cameras to capture a reflection of this light to determine eye position (e.g., based on set of reflections around the user's cornea), modeling the user's eye and determining a gaze direction.
In some implementations, server 510 can be an edge server which receives client requests and coordinates fulfillment of those requests through other servers, such as servers 520A-C. Server computing devices 510 and 520 can comprise computing systems, such as computing system 100. Though each server computing device 510 and 520 is displayed logically as a single server, server computing devices can each be a distributed computing environment encompassing multiple computing devices located at the same or at geographically disparate physical locations.
Client computing devices 505 and server computing devices 510 and 520 can each act as a server or client to other server/client device(s). Server 510 can connect to a database 515. Servers 520A-C can each connect to a corresponding database 525A-C. As discussed above, each server 510 or 520 can correspond to a group of servers, and each of these servers can share a database or can have their own database. Though databases 515 and 525 are displayed logically as single units, databases 515 and 525 can each be a distributed computing environment encompassing multiple computing devices, can be located within their corresponding server, or can be located at the same or at geographically disparate physical locations.
Network 530 can be a local area network (LAN), a wide area network (WAN), a mesh network, a hybrid network, or other wired or wireless networks. Network 530 may be the Internet or some other public or private network. Client computing devices 505 can be connected to network 530 through a network interface, such as by wired or wireless communication. While the connections between server 510 and servers 520 are shown as separate connections, these connections can be any kind of local, wide area, wired, or wireless network, including network 530 or a separate public or private network.
Those skilled in the art will appreciate that the components illustrated in
Reference in this specification to “implementations” (e.g., “some implementations,” “various implementations,” “one implementation,” “an implementation,” etc.) means that a particular feature, structure, or characteristic described in connection with the implementation is included in at least one implementation of the disclosure. The appearances of these phrases in various places in the specification are not necessarily all referring to the same implementation, nor are separate or alternative implementations mutually exclusive of other implementations. Moreover, various features are described which may be exhibited by some implementations and not by others. Similarly, various requirements are described which may be requirements for some implementations but not for other implementations.
As used herein, being above a threshold means that a value for an item under comparison is above a specified other value, that an item under comparison is among a certain specified number of items with the largest value, or that an item under comparison has a value within a specified top percentage value. As used herein, being below a threshold means that a value for an item under comparison is below a specified other value, that an item under comparison is among a certain specified number of items with the smallest value, or that an item under comparison has a value within a specified bottom percentage value. As used herein, being within a threshold means that a value for an item under comparison is between two specified other values, that an item under comparison is among a middle-specified number of items, or that an item under comparison has a value within a middle-specified percentage range. Relative terms, such as high or unimportant, when not otherwise defined, can be understood as assigning a value and determining how that value compares to an established threshold. For example, the phrase “selecting a fast connection” can be understood to mean selecting a connection that has a value assigned corresponding to its connection speed that is above a threshold.
As used herein, the word “or” refers to any possible permutation of a set of items. For example, the phrase “A, B, or C” refers to at least one of A, B, C, or any combination thereof, such as any of: A; B; C; A and B; A and C; B and C; A, B, and C; or multiple of any item such as A and A; B, B, and C; A, A, B, C, and C; etc.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Specific embodiments and implementations have been described herein for purposes of illustration, but various modifications can be made without deviating from the scope of the embodiments and implementations. The specific features and acts described above are disclosed as example forms of implementing the claims that follow. Accordingly, the embodiments and implementations are not limited except as by the appended claims.
Any patents, patent applications, and other references noted above are incorporated herein by reference. Aspects can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further implementations. If statements or subject matter in a document incorporated by reference conflicts with statements or subject matter of this application, then this application shall control.
This application claims priority to U.S. Provisional Application No. 63/309,767, (Attorney Docket No. 3589-0120PV01) titled “A Two-Dimensional Image Into a Skybox,” filed Feb. 14, 2022, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63309767 | Feb 2022 | US |