This invention relates to toothbrushes. More particularly, this invention relates to contour adaptive toothbrushes.
As disclosed in U.S. Pat. Nos. 5,121,520 and 5,499,421 issued to the present inventor, Michael Brice, the disclosures of which are incorporated herein by reference, to effectively clean teeth and gum areas complex maneuvering of a toothbrush is necessary. It is generally acknowledged that the great majority of individuals brush their teeth and gum surfaces primarily in a horizontal and semi-circular manner, even though this particular technique is not deemed to be the best way of cleaning the teeth and gum surfaces. There are two reasons why most individuals resort to this ineffective technique. First, conventional brushing heads are not particularly designed to follow the contours of the teeth and gum surfaces, and as an extension of the human arm do not permit complicated and exact maneuvers to be performed. Second, most brushing takes place in the early morning when one first arises and in the evening just prior to retiring. This is a factor, as demanding complicated procedures for this time of day and night are beyond the tolerance of most individuals. For these reasons, most individuals resort to a simple natural horizontal or semi-circular conventional brushing technique.
Numerous attempts have been made in the past as shown, for example, in U.S. Pat. No. 860,840 to Strassburger, U.S. Pat. No. 3,742,549 to Scopp et al., and U.S. Pat. No. 4,67,360 to Marthaler et al. to improve the design of the toothbrush such as the bristles and/or the head. U.S. Pat. No. 860,840 to Strassburger discloses a toothbrush having two rows of bristles sloped in opposite directions relative to each other, and a central section of bristles arranged parallel to and located between the two outside rows. However, these prior toothbrushes do not simultaneously and/or independently accommodate different contours of the teeth.
In other patents, adjacent head portions of a toothbrush are made to pivot or flex relative to the handle portion so that the bristles are better able to conform to the contours of the teeth and gum surfaces. Such an arrangement is shown in U.S. Pat. No. 928,328 to Carpentier, U.S. Pat. No. 2,266,195 to Hallock, U.S. Pat. No. 3,152,349 to Brennesholtz, U.S. Pat. No. 4,333,199 to Del Rosario, U.S. Pat. No. 4,488,328 to Hyman, U.S. Pat. No. 4,691,405 to Reed, and U.S. Pat. No. 4,776,054 to Rauch. More particularly, U.S. Pat. No. 4,333,199 to Del Rosario and U.S. Pat. No. 4,488,328 to Hyman disclose a toothbrush having a single discreet brushing head that can be pivoted about the handle. The Del Rosario patent, in addition, discloses a brushing head that can rotate about three planes.
U.S. Pat. No. 1,928,328 to Carpentier, U.S. Pat. No. 2,266,195 to Hallock, U.S. Pat. No. 3,152,349 to Brennesholtz and U.S. Pat. No. 4,691,405 to Reed show a toothbrush head capable of flexing or articulating relative to the handle. Specifically, the brushing head comprises a plurality of serially arranged flexing head segments, wherein the segments flex in union or relative to each other.
Finally, U.S. Pat. No. 4,776,054 to Rauch discloses a toothbrush head having three arranged brushing segments, whereby the central segment is aligned with the handle and the two segments on either side are symmetrically arranged relative to the central segment. The bristles on the outer sides of the Rauch patent have narrow, blade-like, contact points which are likely to induce excessive pressure to the gum due to the narrow contact points. In other words, the narrow blade-like bristles inherently place higher excessive concentrated pressure on the gum more so than bristles with a larger contact area.
None of these toothbrushes are directed to overcoming ineffective brushing techniques, or the individual's anatomically limited abilities to effectively clean the curvilinear surfaces of the teeth and provide for gentle stimulation of the varying gum tissues without harm or discomfort for the user, for example, by utilizing side-by-side arranged brushing heads.
In addition, none of these toothbrushes provide for the discreet functioning of one or more brushing heads as separate elements by addressing the force exerted by the user (hereinafter “the X Value”), the resistance/resiliency characteristics of the molecular density of the material used in conjunction with the structural dimensions of the toothbrush (hereinafter “the Y Value”), in concert with the resistance/resiliency of the bristle body as separate functioning elements of the uniform bristle body mass (hereinafter “the Z Value”), as well as the lateral resistance characteristics of the one or more necks (hereinafter “the L Value”).
Moreover, none of these toothbrushes enables the varying of the brushing pressure, in accordance with the proclivity of the user, in order to prevent excessive pressure from being applied to the gums and/or gingival tissue or from injury to the tooth enamel.
Presently, it is only generally known that a neck or a head of a toothbrush can be “resilient.” To achieve full contour-adaptivity of a toothbrush, however, specific forces, resistances and resiliencies of the toothbrush have to be addressed and understood. As a result, full “functioning” of a toothbrush has not been possible as the dynamic-interaction between a user and the toothbrush, as well as the forces, resistances and resiliencies of the toothbrush, have not been addressed, appreciated and/or understood.
One embodiment of a toothbrush includes one or more necks and/or uniform bristle body mass offering resistance and then providing resiliency as to brushing forces as may be applied to achieve full contour-adaptivity of the toothbrush. One can appreciate the toothbrush from the standpoint of a machine having moving parts wherein the force and/or energy of the user is harnessed (the power source) and the moving parts of the toothbrush are dependent upon the understanding of degree of force over a range of user variants and what is required to resist such force and at what point or value of such force in which such resistances incorporated into the toothbrush become resilient. Full functioning of the toothbrush is not possible without this knowledge and the lack of such knowledge prevents any toothbrush from realizing dynamic contour adaptivity that provides workability and full functionality for the user in the application and use of the toothbrush. Therefore, merely stating that a toothbrush is resilient does not provide any degree of knowledge as to what is required on the part of the toothbrush to function.
The embodiment of toothbrush may provide resistance to the brushing force by the flexible neck portions to the degree that such one or more necks resist such force and then become resilient to such force based upon the resistance/resiliency characteristics of the neck structures meeting obstructions. The separate and combined neck structures also provide contour-adaptivity by being directly related to the resistance and resiliency characteristics of the one or more bristle body heads. The resistance/resiliency of the bristle body heads is related to the neck structures, and may correspond to the force(s) exerted by the user. The bristle body heads may be configured to provide resistance to the changing curvilinear structures encountered during brushing.
The toothbrush may then achieve proper functioning of its one or more brushing heads, and provide alternate addressing and penetration of the dento-gingival junction of the tooth/teeth/gum structures (e.g., the gingival margin) so as to respond independently with the inside and adjacent rows of bristles of each head in maintaining contact and orientation to such gingival-margin areas of each individual during brushing. The toothbrush also may provide an instrument for cleaning teeth and gingival tissue that enables a user to achieve correct tooth brushing pressure. In addition, the toothbrush may include one or more heads that respond to the pressure exerted by the user to enable effective tooth/gingival tissue cleaning, without tooth or gingival damage. Furthermore, the toothbrush may be configured to coordinate the brushing force of a user (designated as “the X Value”) with the structural dimensions and the molecular density of the materials of the toothbrush (designated as “the Y Value”), in conjunction and concert with the one or more discreet and combined bristle body mass offering resistance and resiliency characteristics (designated as “the Z Value”).
The toothbrush may include: a handle to be grasped by a human hand; a first neck extending from the handle; a second neck extending from the handle parallel to the first neck; a first bristle support attached to the first neck; a second bristle support attached to the second neck; a plurality of first bristles extending from the first bristle support; and/or a plurality of second bristles extending from the second bristle support. The plurality of first and second bristles may be formed of a stiffness. The first and second necks may be formed of a predetermined resiliency, flexibility and bending resistance. The value of the stiffness relative to the predetermined resiliency, flexibility and bending resistance may be set in accordance with a predetermined brushing force to be applied by the bristles to achieve the full functioning of the one or more articulating heads in making and maintaining contact with the dento-gingival junction.
The embodiments described herein have been included for purposes of illustrating the principals of the present invention. Accordingly, the present invention is not limited to the configurations and constructions as illustrated and/or set forth herein.
Also, throughout the illustrations of different embodiments, the same or equivalent elements have been identified with the same reference numerals.
The left and right handles may be brought together and welded along the handles 12L and 12R by conventional bonding and welding techniques. For example, the Branson Ultrasonic Corporation, manufactures and sells commercial vibrational and ultrasonic welding machines capable of welding various types of plastics.
As discussed above, the toothbrush is configured to be dependent upon understanding and addressing the force exerted by the user in brushing his or her teeth (“the X Value”), meeting the resistance, resiliency characteristics of the molecular density of the material used in conjunction with the structural dimensions of the neck elements (“the Y Value”), achieving alternate functioning of the brushing heads in concert with the resistance/resiliency characteristics of the discreet and combined uniform bristle body mass (“the Z Value”) in maintaining contact with the dento-gingival junction with the inside and adjacent rows of bristles of each independently articulating brushing head. Addressing each of these factors (values), and the elements for carrying out each of these factors, provides for the proper functioning characteristics of the toothbrush.
The toothbrush is dependent on characteristics of necks 13L and 13R, and brush heads 14L and 14R to achieve the proper functioning of the toothbrush. Moreover, the toothbrush can work (function) with the use of a cushioned insert 16 in the handle (see
The inclusion of the cushioned insert, which can be made of a rubber having a stiffness which varies from soft to hard can increase the sensitivity for the user. The increase in sensitivity occurs as a result of the pressure transmitted by the user through the thumb being totally or partially absorbed by said insert. The insert can be of any shape or design which fits into a similarly shaped cavity provided in the left and right handles. The insert 16 is shown to have an oval top. Moreover, the oval shaped inset 16 is provided with a rectangular base 16B. The rectangular base 16B slides into a rectangular cavity 16C formed during the molding operation of the left and right handles. A suitable adhesive may be used to hold the rectangular base 16A of insert 16 in cavity 16C of the handles. Thereafter the bonding of the left and right handles may insure the permanent retention of insert 16 in the finished toothbrush. Also, the insert may be made of rubber and shaped to accommodate the thumb of the user. The resiliency characteristics of the rubber can be varied to accommodate the pressure exerted on the brush through the thumb of the user. Thus the stiffness of the rubber insert can be varied from soft to hard to provide a range of cushioning characteristics.
Further, the polymers used to make the left and right handles can be selected to increase or decrease the flexibility, resiliency and resistance of the necks 13L and 13R of the left and right handles. Similarly, the stiffness of the bristles 15 of the brushing heads 14L and 14R can be selected to range from soft to hard to vary the resiliency and resistance presented by bristle to the teeth and gum of the user.
The embodiments of the toothbrush provide for the adaptation of the toothbrush to the changing surfaces of the differing tooth/teeth/gingival structures of the user encountered during brushing by the one or more self-responding, self articulating brushing heads (see
The independent contour-adaptivity of the one or more brushing heads is dependent upon critical and exact understanding of the forces involved during brushing:
Method of Determining Forces, Resistances & Resiliencies
All laboratory testing utilized the Digital Force & Torque Gauge supplied by the Mark 10 Corporation of Hicksville, New York. The model used for this testing is the Series EG20 Digital Force Gauge, which is calibrated in pounds, kilograms and/or millinewton. Such compression determination was calibrated in kilograms for establishing the necessary and exact forces, resistances and resiliencies for the functioning requirements of the toothbrush.
All calibrations were completed using a fixture constraining each flexible/resistant element in a fixed position (see
Calibration of forces (1): (Y Value) Initial resistance, then subsequent resiliency of the neck structures. The method employed here concerned having the handle portion of the toothbrush fixed in a holding fixture replicating the handle being grasped by a human hand and, allowing the necks (unsupported, as it would be in normal brushing) to deflect and/or flex to a degree of ⅜ths of an inch off of their “natural” fixed and/or molded position upon such force that would yield their deflecting to this ⅜ths of an inch (see
Calibration of forces (2): (Z Value) Vertical deflecting to 50% of fixed (without any pressure being applied) vertical orientation of such bristle body mass and/or structure(s) wherein such pressure was applied to deflect such bristle body mass(es) to 50% off of vertical. This method provides the degree of resistance necessary to derive the degree of force required to produce such deflection. The bristle-body mass, upon 50% of deflection, provides the Z Value (see
Calibration of forces (3): (X Value) All calculations here utilized establishing the average force applied by the average user of toothbrushes, single-headed or otherwise. These calculations incorporated gauging what force was required to deflect such bristle structure/masses to 50% off their “natural” vertical orientation. Additionally, the same method as described in (1) above was used where each different handle was constrained in said fixture replicating the same holding orientation of the average user of a toothbrush allowing the necks and/or neck element of the toothbrush to deflect the same ⅜ths of an inch off of their normal fixed positions to replicate the average movement range occurring during “normal” brushing.
Calibration of forces (4): (L Value) Lateral resistance/resiliency of the individual and/or combined neck structures of the toothbrush. These calibrations were determined having the individual neck segments/structures fixed as described in (1) and (3) above wherein such force was applied allowing each segment to deflect laterally, again, ⅜ths of an inch replicating the movement of the brush head(s) combined as the individual uses the “upward and downward” movement during brushing (see
Force, Resistance & Resiliency Values
The average force exerted by the user on a toothbrush is from 1.05 to 2.35 kg of brushing force. Such pressure force exerted deflects the bristle body mass to 50% of vertical orientation.
The following values were derived from deflecting the neck structures (Y-Value) ⅜ths of an inch from their fixed molded position. The heads and necks combined (Z-Value) were also deflected ⅜ths of an inch from their fixed positions. The lateral calculations (L-Value) also were deflected ⅜ths of an inch from their fixed positions.
The operational range of 5 different variations of a toothbrush follows:
While the above values represent embodiments of the toothbrush establishing the ranges of full-functioning, contour-adaptivity, the following stated values represent the additional ranges in which the toothbrush can still operate and achieve full range contour-adaptivity.
Values for resiliency follows:
The range of X, Y, Z, and/or L values of one embodiment of a toothbrush may be:
The foregoing presentation of the described embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments are possible, and the generic principles presented herein may be applied to other embodiments as well. As such, the present invention is not intended to be limited to the embodiments shown above, and/or any particular configuration of structure but rather is to be accorded the widest scope consistent with the principles and novel features disclosed in any fashion herein.
This application is a continuation of U.S. patent application Ser. No. 10/326,664 filed Dec. 23, 2002 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 09/596,081, filed Jun. 16, 2000 now abandoned, both entitled “Twin-Headed Toothbrush, both of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
18653 | Wadsworth | Nov 1857 | A |
715263 | Haussmann | Dec 1902 | A |
860840 | Strassburger | Jul 1907 | A |
1389624 | Carroll | Sep 1921 | A |
1565750 | Nathanson | Dec 1925 | A |
1668216 | Noel | May 1928 | A |
1679785 | Quinn | Aug 1928 | A |
1679946 | Ruff | Aug 1928 | A |
1748895 | Noel | Feb 1930 | A |
1868368 | Reese | Jul 1932 | A |
1908509 | Davis | May 1933 | A |
1928328 | Carpentier | Sep 1933 | A |
2077392 | Boyd | Apr 1937 | A |
2164219 | McGerry | Jun 1939 | A |
2242743 | Brown | May 1941 | A |
2266195 | Hallock | Dec 1941 | A |
2528992 | Barr | Nov 1950 | A |
3129449 | Cyzer | Apr 1964 | A |
3152349 | Brennesholtz | Oct 1964 | A |
3193864 | Makowsky | Jul 1965 | A |
3350737 | Makowsky | Nov 1967 | A |
3691587 | Makowsky | Sep 1972 | A |
3742549 | Scopp et al. | Jul 1973 | A |
3953907 | Froidevaux | May 1976 | A |
4333199 | Del Rosario | Jun 1982 | A |
4403623 | Mark | Sep 1983 | A |
4449266 | Northemann et al. | May 1984 | A |
4472853 | Rauch | Sep 1984 | A |
4476604 | White et al. | Oct 1984 | A |
4488328 | Hyman | Dec 1984 | A |
4638520 | Eickmann | Jan 1987 | A |
4667360 | Marthaler et al. | May 1987 | A |
4691405 | Reed | Sep 1987 | A |
4716614 | Jones et al. | Jan 1988 | A |
4776054 | Rauch | Oct 1988 | A |
4796325 | Bortman | Jan 1989 | A |
4864676 | Schaiper | Sep 1989 | A |
4876157 | Barman | Oct 1989 | A |
5121520 | Brice | Jun 1992 | A |
5146645 | Dirksing | Sep 1992 | A |
5305491 | Hegemann | Apr 1994 | A |
5355544 | Dirksing | Oct 1994 | A |
5493747 | Inakagata et al. | Feb 1996 | A |
5499421 | Brice | Mar 1996 | A |
5735012 | Heinzelman et al. | Apr 1998 | A |
5875510 | Lamond et al. | Mar 1999 | A |
5987690 | Heuler | Nov 1999 | A |
6112361 | Brice | Sep 2000 | A |
6327734 | Meginniss et al. | Dec 2001 | B1 |
6425295 | Meginniss | Jul 2002 | B1 |
6532818 | Blankenship | Mar 2003 | B2 |
6536068 | Yang et al. | Mar 2003 | B1 |
6546802 | Shiraishi et al. | Apr 2003 | B2 |
6786732 | Savill et al. | Sep 2004 | B2 |
6884947 | Cipriani | Apr 2005 | B2 |
7059202 | Stanos et al. | Jun 2006 | B2 |
20030135944 | Brice | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
818794 | May 1952 | DE |
3703288 | Aug 1988 | DE |
4115943 | Nov 1991 | DE |
642976 | Sep 1928 | FR |
855253 | May 1940 | FR |
2618651 | Feb 1989 | FR |
2641680 | Jul 1990 | FR |
247005 | Feb 1926 | GB |
2192784 | Jan 1988 | GB |
594027 | May 1959 | IT |
286708 | Dec 1991 | JP |
13691 | Jul 1993 | WO |
Number | Date | Country | |
---|---|---|---|
20050246847 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10326664 | Dec 2002 | US |
Child | 11179310 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09596081 | Jun 2000 | US |
Child | 10326664 | US |