Systems with different numbers of processors can provide for a range in computing power. For example, a particular processor may be used by itself or as part of a CPU assembly including four processors. A pair of CPU assemblies can be mated to provide eight processors. Several CPU assemblies can be mounted in a backplane to providing even higher levels of computing power.
Economies of scale can be met using a single processor design that permits various configurations such as those mentioned above. A single processor design can be incorporated in different CPU assemblies (e.g., with different numbers of CPUs, different printed-circuit boards and support circuitry, and different connectors) to provide computing systems representing a range of performance specifications.
For example, a processor can be designed to support both glued and glueless configurations. In a “glued” configuration, “glue” logic external to the processors is provided through which the processors or processor assemblies communicate with each other. The glue logic can provide various functions, such as snoop filtering, that enhance inter-processor communications, especially in large-scale systems. In glueless systems, CPU's or CPU assemblies communicate directly without intervening logic. Typically, glueless systems are less costly, while glued systems are better suited to large-scale systems.
An assembly 100 includes a central-processing unit (CPU) printed-circuit-board (PCB) 101 and a twin-mate connector arrangement 103, as shown in
A process 300, flow-charted in
At process segment 302, a pair of twin-mate assemblies can be opposed (disposed opposite each other). In the case of CPU PCA 400, twin-mate connectors 411 and 412 are mounted on a bottom face of CPU PCB 401, whereas processors 403, memory modules 405, and edge connector set 407 are mounted on a top face of CPU PCB 401. As indicated in
In
In the configuration of
CPU PCA 400 is an exemplar of one type of twin-mate connector arrangement. In this type of arrangement, one or more male-female pairs of connectors are arranged with 180 degree anti-symmetry so that opposing pairs of male and female connectors can mate when two twin-mate connector arrangements are disposed facing each other. Herein, “anti-symmetry” refers to the condition in which a 180 degree rotation results in the male connector assuming the former position of the female connector and vice versa. In a related arrangement, each “hermaphrodite” connector has both male and female features so that connectors can twin-mate on a connector-by-connector basis. In some embodiments, twinning can involve stackable connectors, in which case mating can occur without disposing assemblies in opposing orientations.
While CPU PCA assemblies 400 and 500 are nominally identical, in other embodiments, twin-mate CPU PCAs with different specifications (e.g., different numbers and types of processors and memory modules) can be mated. Also, one twin-mate CPU PCA can be mated with an assembly other than a CPU PCA. In particular, process segment 303 can involve mating a twin-mate CPU PCA 400 with a glue-logic PCA 700, as shown in
Glue-logic PCA 700 includes a glue-logic PCB 701, glue logic 703, an edge connector set 707, and a mezzanine edge-connector arrangement 709 including male and female twin-mate mezzanine connectors 711 and 712. Glue logic 703 is configured to intercept signals travelling between CPUs 403 and edge connector 707. Glue logic can buffer signals to overcome attenuation. In addition, signals can be processed by glue logic 703. For example, glue logic 703 can inspect through going signals to determine contents of memory modules 405 (
Several glued CPA modules 801, 802, 803, and 804 can be inserted into a backplane 810 to define a multi-processor computer system 800, shown in
In computer system 800, CPU modules 801-804 are connected to backplane 810 via edge connectors, e.g., edge connector 707. There is no direct connection between a CPU PCB and backplane 810. According, edge connectors, e.g., edge connector 407,
Another glued CPA module configuration is shown in
Herein, a “connector” is a physical device configured for physical and communicative mating with a compatible connector. Connectors are typically incorporated into respective host devices (e.g., a PCA assembly) so that mating connectors mates the host devices. “Communicative” and related terms encompass electrical and optical communications. In other words, mating connectors can provide for conveyance of electrical signals, optical signals, or both.
Herein, a “mezzanine” connector is a connector mounted on a face of a PCB board or other substrate and oriented to provide for a mating motion orthogonal to a plane of the PCB board. An edge connector is a connector, typically mounted on or near an edge of a PCB board, that is oriented to provide for a mating motion along the place of a PCB board.
Herein, “glue” refers to glue-logic circuitry for monitoring and in some cases modifying communications passing therethrough between processors and other computing devices. A glued module is one in which processors communicate with external processes of a multiprocessor system via glue logic. A glueless module is a module in which processors on different CPAs of the module communicate with each other directly and not through glue logic.
Herein, a “processor”, “central-processing unit”, or “CPU” is an integrated circuit or integrated circuit package for executing physically encoded computer instructions. “Memory” is non-transitory tangible computer-readable storage media. A printed circuit board is used to mechanically support and electrically connect electronic components, such as processors and memory modules, using conductive pathways, tracks or signal traces, e.g., etched from copper sheets laminated onto a non-conductive substrate.
Herein, A “backplane” (or “backplane system”) is a circuit board (usually a printed circuit board) that connects several connectors in parallel to each other so that each pin of each connector is linked to the same relative pin of all the other connectors forming a computer bus. A back plane can be used as a backbone to connect several printed circuit boards together to make up a complete computer system. A backplane is generally differentiated from a motherboard by the lack of on-board processing power where the CPU is on a plug-in card.
Herein, a “system” is a set of interacting elements, wherein the elements can be, by way of example and not of limitation, mechanical components, electrical elements, atoms, instructions encoded in storage media, and process segments. In this specification, related art is discussed for expository purposes. Related art labeled “prior art”, if any, is admitted prior art. Related art not labeled “prior art” is not admitted prior art. The illustrated and other described embodiments, as well as modifications thereto and variations thereupon are within the scope of the following claims.