This invention is directed to an apparatus which may be in the form of a pump or compressor and which can function to compress or to accelerate a fluid such as air or a liquid. The apparatus may also comprise an engine such as a combustion engine. The apparatus includes at least two compressing members which may be in the form of pistons. Each piston can move along its stroke, but one piston remains stationary while the other piston moves to compress the fluid against the stationary piston. Thereafter, the stationary piston becomes the moving piston and the moving piston becomes the stationary piston. There is a degree of lost motion in the changeover. This procedure is repeated while the apparatus is in use. The apparatus is not limited to pumping or compressing air and may find applications with gas mixes, mixtures of gas and liquids, and the like. The apparatus can also be used to pump non compressible fluids such as liquids.
Pumps and compressors which use moving pistons are extremely well known in the art. Typically, the piston is connected to a crank. The piston reciprocates in a cylinder and the reciprocating action results in pumping fluid which passes into the cylinder. The pump is typically electrically powered, powered by an internal combustion motor and the like. One disadvantage with this type of pump is that pumping occurs only when piston is in the compressive stroke. When the piston is in the drawdown stroke, no pumping occurs as the drawdown stroke is required to suck additional fluid into the cylinder or housing. Therefore, half the action of the piston does not contribute to the pumping action. Another disadvantage with existing piston pumps is that the piston has a short stroke and this results in increased wear and tear of the pump. Moreover, these types of pumps generally suffer from excessive noise levels making them unsuitable in many applications.
A conventional piston in a cylinder has about a 1:1 bore to stroke ratio. For instance, if the bore has a diameter of 60 mm, the piston stroke is also approximately 60 mm. An advantage of the apparatus of the present invention is that the “piston” to “bore” ratio can be 7:1, 10:1, or even larger. Thus, the apparatus can have approximately 10 times the stroke of a conventional piston in a cylinder. This allows the apparatus to work at lower speeds, provides lower wear and reduces the noise during use of the apparatus.
It will be clearly understood that, any prior art publications referred to herein, do not constitute an admission that any of these publications form part of the common general knowledge in the art in Australia or in any other country.
It is an object of the invention to provide an apparatus which can compress a fluid and which may overcome at least some of the above-mentioned disadvantages.
In one form, the invention resides in an apparatus for pumping or compressing a fluid, the apparatus comprising:
a housing which has an annular bore,
at least one inlet and at least one outlet communicating with the bore,
a first piston,
a second piston, each said piston adapted for movement relative to the bore,
drive means to drive one said piston relative to the bore,
a first releasable locking means to lock and release a said piston to the drive means, and,
a second releasable locking means to lock the other said piston against movement entirely along the bore.
Suitably, the drive means comprises a support member which can rotate along the bore and to which each piston can be locked and released. The support member may comprise an annular plate member, ring member and the like.
The first locking means suitably locks and unlocks the piston to the drive means. The first locking means may comprise at least one locking projection or pin, an abutment and the like.
The second locking means suitably locks and unlocks the piston against movement entirely along the bore. The second locking means may lock or hold the piston to the bore, or to some other part of the apparatus to prevent the piston from moving entirely along the bore.
The apparatus does not need to contain a reciprocating piston. Instead, one piston travels along the annular chamber or bore which is typically substantially circular. The other piston remains stationary and can be seen as forming a temporary “end wall” in the chamber. Fluid can then be compressed between the travelling piston and the stationary piston. When the travelling piston has travelled along the chamber [bore], it comes close to the rear wall of the stationary piston and the locking means can then be operated to release the stationary piston such that the stationary piston becomes the travelling piston, and the previously travelling piston becomes the stationary piston.
It should be understood that the apparatus is not limited to a pair of pistons travelling fully along the loop [bore]. For instance, it is possible for the chamber [bore] to have multiple pistons. One piston can travel partway along the loop shaped chamber until it contacts a stationary piston. The stationary piston can then be decoupled to become the travelling piston and the previously travelling piston can become a stationary piston. The new travelling piston can then move partway along the loop shaped chamber until it contacts another stationary piston. Thus, it is envisaged that a loop shaped chamber (which is typically circular) may have a plurality of pistons each defining a particular stroke length. The stroke length need not be equal for each piston and some pistons may travel along a short pathway and other pistons may travel along a larger pathway. This allows the apparatus to have multiple stroke chambers. This may make the apparatus suitable in compressing separate gases with the compressed gases passing into a common collection manifold of some sort and the different size of each stroke chamber results in the gases being compressed and mixed in different amounts.
It should also be realised that the piston may move along the chamber either by being attached to the support member and having the support member rotating or otherwise moving relative to the stationary chamber, or having a stationary support member and a moving or rotating chamber. It is also envisaged that the support member and the chamber may rotate relative to each other to move the piston along the chamber. It is however envisaged that the simplest type of apparatus will have a moving piston in a stationary chamber (bore)
The apparatus may have a substantially circular configuration when viewed in plan. One advantage of the apparatus is that each piston moves along a generally circular partway as opposed to a reciprocating pathway. This allows the stroke length to be greatly increased relative to reciprocating pistons. In turn, this can result in less wear on the apparatus, less noise during operation, a large volume flow, and it is envisaged that many of the components of the apparatus including the pistons can be manufactured from plastics material. There need be no limitation on the length of the chamber.
The apparatus contains a housing. The housing may comprise a two-part housing or a multiple part housing which are attached together. Typically, the housing comprises a two-part housing consisting of an upper and a lower part which are fastened together typically via separate fasteners such as screws, bolts and the like. Each housing part may resemble a hemisphere when viewed in side elevation. One hemisphere may contain the at least one outlet and one hemisphere may contain the at least one inlet or each hemisphere may contain both.
The housing contains an annular chamber. Suitably, the chamber is defined at least partially by the inner wall of the housing. The chamber can be seen as a bore through which the pistons travel. Alternatively, a separate loop shaped chamber may be provided in the housing. Suitably, one part of the loop shaped chamber is defined by the inner wall of the housing and another part of the loop shaped chamber is defined by the wall of a central passageway passing through the housing.
The loop shaped chamber is typically substantially circular when viewed in plan and is also typically circular in cross-section. Therefore, in one form the loop shaped chamber may be in the form of a toroid. The length of the loop shaped chamber (the stroke length) can vary to suit but it is envisaged that a length of between 20-200 cm will be suitable in respect of most applications. It should be appreciated that these values are not limiting and could, for certain applications, be exceeded, for instance in the hub of a wind turbine. The cross-section length or diameter of the chamber may vary to suit but it is envisaged that a cross-section length or a diameter of between 1-20 cm will be suitable in respect of most applications. Again, no limitation is meant by this range, and the chamber may have a diameter of 1 meter or more.
The housing is provided with at least one inlet and at least one outlet which communicate with the chamber. It is envisaged that more than one inlet may be provided and that more than one outlet may be provided. The size and shape of the or each inlet and the or each outlet may vary and the shape may be circular, oval, rectangular, polygonal, or have an irregular shape. The size of the or each inlet and the or each outlet can vary and can be from a relatively small size (to provide a nozzle effect) to a relatively large size. It is envisaged that the inlet and the outlet may be provided with a valve arrangement to regulate fluid passing into and from the chamber. It is also envisaged that some form of manifold may be provided with the inlet and the outlet and a manifold may find particular suitability if multiple inlet and outlets form part of the apparatus which may be the case if the chamber contains multiple pistons.
The apparatus contains a first piston and a second piston. Each piston is suitably shaped such that as it passes along the chamber, the piston seals, or at least partially seals against the chamber wall, or sealing means are provided to create a seal or a partial seal. Typically, the chamber will be circular in cross-section and therefore the piston will typically also be circular in cross-section. If the chamber has a different cross-section configuration, such as oval, it is envisaged that the piston will also have an oval cross-section configuration. The piston will typically have a body provided with a front face, a rear face, and an outer wall. The outer wall typically seals or is closely spaced from the wall of the chamber. The length of the body may vary to suit. For instance the piston may be substantially disk shaped which means the length of the body is quite small. The side wall or edge of the disk shaped piston is typically rounded. Alternatively, the piston may have a body length which is quite large which means that the piston will have a relatively elongate shape. It is envisaged that the outer wall of the piston will be curved in two directions to enable the piston to travel along the chamber while still maintaining a reasonably good seal between the outer wall of the piston body and the wall of the chamber.
The pistons however need not be disk shaped and may have quite irregular shapes. In one embodiment of the invention, each piston has a front wall and a rear wall. The front wall has a concave portion and the rear wall has a convex portion.
The apparatus has a drive means to drive each piston along the bore. The drive means typically comprises a support member which supports the first piston and second piston. Typically, a single support member is used to support the first piston and the second piston, but it is envisaged that the support member may also comprise more than one support member.
If the apparatus is such that the chamber is stationary and the piston travels through the chamber, it is envisaged that the support member will rotate or otherwise move to transport the piston along or through the chamber. In this embodiment, the support member may comprise a disk or a ring which rotates about its rotational axis and the first piston and/or the second piston may be attached to the support member such that rotation about the support member causes the piston to move along the chamber.
The support member is typically driven by a support drive means. The support drive means may comprise an external motor. The external motor may comprise an electric motor, a hydraulic motor, a pneumatic motor, a combustion motor and like. It is envisaged that the apparatus will contain or comprise a shaft or like member which is operatively connected to the support member and which can also be operatively connected to the support drive means such that operation of the drive means will rotate the shaft to cause rotation of the support member and therefore movement of the piston. Of course, the apparatus may also be provided with an opening or socket into which a shaft can be fitted to rotate or move the support member.
If the support member remains substantially stationary, and the chamber rotates or moves, it may be necessary to provide some form of drive means to rotate the chamber and it is envisaged that some form of drive means will be provided to rotate the housing which can therefore rotate the chamber. An example of this is where the apparatus comprises the hub of a wind turbine.
The apparatus can provided with a releasable attachment means to selectively attach the first piston and the second piston to the support member. The releasable attachment means can comprise the first releasable locking means to lock and release a said piston to the drive means.
If a single support member is provided, the releasable attachment means may releasably attach the first piston and second piston to the support member. However, a plurality of support members may be provided and there may be provided a releasable attachment means for the first piston and a releasable attachment means for the second piston. It is also envisaged that if a single support member is provided there may still be a releasable attachment means for the first piston and a releasable attachment means for the second piston.
The first releasable locking means may comprise at least one projection which may be on the piston, the support member and/or the chamber and at least one recess which may be on the piston, the support member and/or the chamber. Suitably, the at least one projection forms part of or is carried by the piston and the at least one recess is provided on or in the support member and/or the chamber. A plurality of projections may be provided.
The projection may comprise an elongate slide which may be formed separately from the piston and which may extend through a slot in the piston. The slide may comprise a pin, finger, a rod, a strip and like. Typically, the slide extends from the outer wall of the piston and can move between an extended position where the slide extends from the outer wall of the piston, to a retracted position where the slide is flush with the outer wall of the piston or is retracted into the piston body. When the slide is in the extended position, it can catch or engage in a recess on the chamber and/or the support member which will hold the piston against movement through the chamber. When the slide is in the retracted position, the piston is free to move through the chamber typically by being attached to the support member.
The slide may have an outer edge that comprises a rotating member such as a ball (for instance a ball bearing). The wall of the chamber may contain a small annular groove along which the ball travels to reduce wear.
It is envisaged that the first releasable locking means will be provided to selectively attach the first piston and second piston to the support member and that the second releasable locking means will be provided to selectively attach the first piston and second piston relative to the chamber. Thus, when the piston is attached to the support member, rotation of the support member will cause the piston to move through the chamber. When the piston is attached relative to the chamber, movement of the support member will not cause the piston to move. It is preferred that the above means are somewhat combined as will be described in greater detail below.
No limitation is meant to be construed on the invention by the above description of the releasable attachment means. For instance, the releasable attachment means may comprise a magnetic means to magnetically hold the piston in position and to release the piston. Other means to hold and release each piston are envisaged and may comprise part of the invention.
In the embodiments, the apparatus is described utilising a single pair of pistons and ports, or three pairs of pistons and ports. However, no limitation is meant thereby and the apparatus can have other numbers of piston pairs and ports.
Moreover, no limitation is meant to be construed on the invention by the description of the invention as a compressor or a pump. For instance, it is envisaged that the invention can be utilised as an engine.
Embodiments of the invention will be described with reference to the following figures in which:
Referring to the figures and initially to
Housing 11 can be made of plastics material and comprises two parts being an upper part 17 and a lower part 18. The two parts are attached together by fasteners passing through holes 19. A seal 20A is provided between the two parts to provide a fluid tight housing. When the two parts are attached together, there is provided an internal ring-shaped recess which forms the loop shaped chamber 12 [which can also be seen as a bore]. The chamber is defined by the inner wall 21 of the upper housing part and inner wall 22 of the lower housing part (see
In this particular embodiment, the upper housing part 17 is provided with two outlets 13. The configuration and the number of the outlets or the inlets can vary.
Pistons 15, 16 are generally identical and can be made of plastic material, metal and the like.
In this particular embodiment, each piston is attached to a support member 14. Support member 14 is better illustrated in
Support member 14 is mounted for rotation in the housing as follows: the disk like support member is provided with a central collar 28 which extends above and below the disk. A bearing assembly 29 is attached to collar 28 to allow support member 14 to rotate relative to housing 11. An external drive member [not illustrated] is attached to collar 28 and rotation of the drive member causes rotation of support member 14 in the otherwise stationary housing 11.
As best illustrated in
In a particular embodiment, the releasable attachment means comprises a combination of projections (in the form of sliders 34) on each piston, a number of recesses 20 in the thickened outer edge 32 of support member 14 (best illustrated in
Each slider is free to slide within the respective recess 35 and it is not necessary to provide any springs to move the sliders.
The pistons are coupled/released from the support member 14 and the chamber wall when the travelling piston abuts against the stationary piston which will be described immediately below and with reference to
Referring to these figures, and initially to
Referring to
Best illustrated in
This process is repeated as the “travelling” piston is rotated by support member 14 and contacts the rear of “stationary” piston to release the “stationary” piston and to lock the “travelling” piston.
The chamber is provided with inlets/outlet ports 13 which are in the area where the pistons lock/unlock. Referring to
Each piston 15, 16 is provided with a peripheral sealing ring 37 (see
The pistons 45, 46 are again locked and unlocked to a rotating support member 47. However, this is not achieved by sliders, and in this particular embodiment, the locking/unlocking is achieved by rocker arms and in particular two rocker arms are provided to lock/unlock the pistons. This is achieved as follows.
The rotating support member 47 is provided with three rocker arms 48-50 which are attached to support member 47 and therefore rotate with support member 47. These rocker arms are illustrated in greater detail in
Illustrated in
The original stationary piston 46 has passed over hump 54 on rocker arm 48 and has engaged with shoulder 53 such that the original stationary piston 46 now travels with the rotating support member 47 to become the travelling piston.
If more than one pair of pistons and ports is employed, they may be spaced at different distances apart to minimise potential stagnation during piston changeover. For example, if three piston pairs are employed, these may be placed at 0°, 110° and 240° which means that there will always be two sections between piston pairs that are pumping while only one of the pairs is experiencing a changeover. The ports may be wider than the pistons or narrower than the pistons. If the apparatus is used as a water pump, there may be an opening between the pistons when the pistons are close, the opening communicating with the chamber containing a gas which can act as a spring. Each slider may have a flat on each end to reduce where and tear.
It should be appreciated that various other changes and modifications can be made to the embodiment described without departing from the spirit and scope of the invention
Number | Date | Country | Kind |
---|---|---|---|
PS2508 | May 2002 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU03/00635 | 5/23/2003 | WO | 00 | 1/9/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/100254 | 12/4/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3087671 | Myles | Apr 1963 | A |
3221717 | Renshaw | Dec 1965 | A |
3500798 | George | Mar 1970 | A |
3739755 | Folstadt | Jun 1973 | A |
4072447 | Gaspar | Feb 1978 | A |
4844708 | Lopez | Jul 1989 | A |
4901694 | Sakita | Feb 1990 | A |
Number | Date | Country |
---|---|---|
200 476 | Jul 1908 | DE |
3444023 | Jun 1985 | DE |
1281680 | Dec 1961 | FR |
367 234 | Feb 1932 | GB |
WO 9932760 | Jul 1999 | WO |
WO 0242608 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060171836 A1 | Aug 2006 | US |