The present disclosure relates to twin rotor devices (e.g., Roots-style superchargers, Roots-style expanders, screw compressors, screw expanders, etc.). Such twin rotor devices can be used to pump and/or compress fluids (e.g., gasses, air, mixtures, etc.) using shaft power and/or can be used to extract shaft power from fluids (e.g., by expanding compressed gas).
The present invention relates to twin rotor blowers/compressors, twin rotor expanders, etc. Such twin rotor blowers/compressors have been used for supercharging internal combustion engines (e.g., Diesel cycle engines, Otto cycle engines, etc.). When used on internal combustion engines, such twin rotor blowers/compressors may be a component of a forced induction system that supplies air or an air/fuel mixture to the internal combustion engine. Such forced induction systems supply the internal combustion engine with the air or the air/fuel mixture at a higher pressure than atmospheric pressure. In contrast, naturally aspirated internal combustion engines are supplied with air or an air/fuel mixture at atmospheric pressure. By supplying pressurized air or a pressurized air/fuel mixture to the internal combustion engine, the engine is supercharged. The twin rotor blowers/compressors may be known as positive displacement superchargers. Such positive displacement superchargers displace a given volume of gas for every revolution of an input shaft at a given pressure and a given temperature. In contrast, certain other superchargers may be non-positive displacement superchargers.
The twin rotor blowers/compressors may take a form of a Roots-type device, a form of a screw compressor, etc. The Roots-type device may have a pair of rotors that intermesh with each other. In particular, each of the rotors may define a similar plurality of lobes with valleys between adjacent lobes. The lobes and valleys of the pair of rotors may be mirror images of each other (e.g., if helically twisted). The lobes and valleys of the pair of rotors may be identical to each other (e.g., if straight along an axial direction of the rotor). The lobes and valleys may be defined by alternating tangential sections of hypocycloidal or hypocycloidal-like curves and epicycloidal or epicycloidal-like curves. When each of the pair of rotors is spun, fluid is trapped in the valleys and bounded by the adjacent lobes and walls of a housing and carried from an intake side to an exhaust side of the Roots-type device. The twin rotor blowers/compressors (e.g., the Roots-type device) may move the fluid from the intake side to the exhaust side without compression until the fluid is exposed to the exhaust side (e.g., an exhaust port). As the fluid is forced out of the exhaust port, it may be compressed.
The screw compressor (e.g., a twin-screw type supercharger) may have a pair of rotors that intermesh with each other. In particular, the pair of rotors may include a male rotor and a female rotor that intermesh with each other. The male rotor and the female rotor may have different numbers of lobes or a same number of lobes. A working volume may be defined as an inter-lobe volume between the male and the female rotors. When each of the pair of rotors is spun, fluid is trapped in the working volume bounded by the adjacent lobes and walls of a housing and carried from an intake end to an exhaust end of the screw compressor. The working volume may be larger at the intake end. The working volume may decrease along an axial length of the rotors toward the exhaust end. Fluid is drawn in at the intake end of the rotors between the male and female lobes. A corresponding reduction in the working volume toward the exhaust end may result in compression of the fluid that is trapped in the working volume. For example, at the intake end, the male lobes of the male rotor (and corresponding valleys of the female rotors) may be larger than corresponding female lobes of the female rotor (and corresponding valleys of the male rotors), and at the exhaust end, the male lobes (and corresponding valleys of the female rotors) may be smaller than corresponding female lobes (and corresponding valleys of the male rotors). Thus, relative sizes of the male and female lobes may reverse proportions along axial lengths of both of the rotors (e.g., the male lobes become larger and the female lobes become smaller). The increase in volume of the female lobes may result in a reduction in volume of the fluid carrying cavity and thereby cause the compression of the fluid before the fluid carrying cavity is in fluid communication with the exhaust end.
Other methods of reducing the working volume toward the exhaust end may be used. In certain embodiments, a screw-compressor like device may not necessarily reduce the working volume toward the exhaust end.
An example Roots-style supercharger is disclosed at U.S. Pat. No. 7,866,966, assigned to the assignee of the present disclosure, and incorporated herein by reference in its entirety. Another example Roots-style supercharger is disclosed at U.S. Pat. No. 4,828,467, also assigned to the assignee of the present disclosure, and also incorporated herein by reference in its entirety. As such Roots-style superchargers (and other twin rotor superchargers) typically draw air in through an inlet at atmospheric pressure and deliver compressed air from an outlet to an intake manifold of the internal combustion engine at an elevated pressure, the elevated pressure from the outlet of the Roots-style supercharger (and other twin rotor superchargers) typically tends to leak back across clearances within the supercharger. Such clearances may be between lobes of a pair of rotors within the supercharger. Clearances may also exist between tips of the lobes of the rotors and a housing of the supercharger. Clearances may further exist between an end of the rotors of the supercharger and corresponding surfaces of the housing. Such clearances are often determined, at least in part, by manufacturing tolerances of the rotors and the housing of the supercharger. For example, a Roots-style supercharger made with a collection of components at a minimum material condition with respect to the manufacturing tolerances will have leakage rates higher than another Roots-style supercharger assembled from components at a maximum material condition with respect to the manufacturing tolerances. This may lead to certain Roots-style superchargers that are nominally identical having different performance characteristics that are caused by the different leakage rates. Furthermore, it is generally desired to reduce such clearances and thereby minimize leakage within the supercharger. However, increasing precision of the manufacturing tolerances may increase manufacturing costs. Furthermore, a number of different dimensions and corresponding dimensional tolerances together determine the clearances that exist at final assembly. It is desired to reduce the leakage rate within a supercharger (and other twin rotor devices) without depending upon high precision dimensional tolerances from the set of individual components in the assembled supercharger and/or twin rotor device.
Typical screw compressors have similar leakage issues caused by clearances between lobes of the pair of rotors, clearances between tips of the lobes of the rotors and a housing, and clearances between an end of the rotors and corresponding surfaces of the housing. Likewise, increasing precision of the manufacturing tolerances may increase manufacturing costs, and a number of different dimensions and corresponding dimensional tolerances together may determine the clearances that exist at final assembly. It is also desired to reduce the leakage rate within a screw compressor without depending upon high precision dimensional tolerances from the set of individual components in the assembled screw compressor.
When Roots-style superchargers or similar twin rotor devices are run in reverse (i.e., when fluid pressure and flow are converted into shaft power), a Roots-type device (and/or other twin rotor device) may serve as a Roots-style expander (and/or other twin rotor expander). Such expanders may have similar leakage issues caused by clearances between lobes of the pair of rotors, clearances between tips of the lobes of the rotors and a housing, and clearances between an end of the rotors and corresponding surfaces of the housing. It is also desired to reduce the leakage rate within a Roots-style expander without depending upon high precision dimensional tolerances from the set of individual components in the assembled Roots-style expander.
Similarly, when screw compressors or similar devices are run in reverse (i.e., when fluid pressure and flow are converted into shaft power), a screw-type device may serve as a screw expander. Such screw expanders may have similar leakage issues caused by clearances between lobes of the pair of rotors, clearances between tips of the lobes of the rotors and a housing, and clearances between an end of the rotors and corresponding surfaces of the housing. It is also desired to reduce the leakage rate within a screw expander without depending upon high precision dimensional tolerances from the set of individual components in the assembled screw expander.
An aspect of the present disclosure relates to various improvements made to twin rotor devices (e.g., Roots-style superchargers). The improvements may result from reduced internal clearances between intermeshing lobes of the Roots-style supercharger, between tips of the lobes and corresponding surfaces of a housing of the Roots-style supercharger, and/or from reduced clearances between ends of the rotors and corresponding surfaces of the housing. In particular, the twin rotor device may be partially or fully assembled and a coating (e.g., an abradable coating) may be applied to the assembled or partially assembled twin rotor device. If partially assembled, the pair of rotors and the housing may be sub-assembled. The rotors may be rotating as the coating is applied and/or as the coating is curing. The rotors may be driven by an input shaft of the twin rotor device and/or may be driven by a pressure differential across an inlet and an outlet of the twin rotor device. The coating may cure and adhere to some or all of the internal surfaces of the twin rotor device.
In embodiments where differential pressure drives the rotors and/or otherwise exists between the inlet and the outlet of the twin rotor device, leakage resulting from internal clearances may draw a coating precursor material as the coating precursor material passes through the twin rotor device. As the coating precursor material is deposited on surfaces defining the internal clearances, a coating is formed on the surfaces defining the internal clearances, and the coating reduces the various clearances, and the leakage is thereby reduced in areas where the coating has been deposited/formed. Other areas with remaining clearances (e.g., larger remaining clearances that result in greater leakage rates) thereby attract the coating precursor material, and the remaining clearances are also reduced as a coating is also formed on the surfaces defining the remaining clearances.
By measuring and monitoring the pressure differential between the inlet and the outlet and/or rotor speed of the rotors, the leakage rate (e.g., an overall internal leakage rate) may be monitored and the coating process may be continued until the internal leakage rate is reduced to a desired level and/or a predetermined level. The internal leakage may be measured by various means that may include measuring the pressure differential with pressure sensors and/or the rotor speed with a tachometer. A series of twin rotor devices from a given assembly line and/or multiple assembly lines across the world can thereby be tuned to have identical or near identical performance characteristics that are independent of the manufacturing variability of the components.
In methods using powder-coating techniques and/or other techniques that require an electrical connection, portions of the housing that cover a gear set of the rotors may be left off during the coating process thereby allowing a grounding brush to contact a shaft of one or both of the rotors to provide an electrical ground and facilitate electrostatic depositing of powder coating material on the rotors (e.g., while the rotors are spinning). The other internal surfaces (e.g., of the housing) may also be grounded to facilitate electrostatic depositing of powder coating material. In certain embodiments, the rotors and the housing may both be grounded. In other embodiments, the rotors and the housing may be oppositely charged. In certain embodiments, the electric charge applied to the rotors and/or the housing may be positive or negative. In other embodiments, the electric charge applied to the rotors and/or the housing may alternate between positive and negative.
The coating may be cured by conventional means. For example, the coating may be cured by evaporation of volatile organic compounds, a chemical reaction of a two-part epoxy, heat, ultraviolet energy, powder-coating curing methods, etc. A catalyst may be applied to the rotors and/or the housing prior to the coating material being applied (e.g., before assembly or sub-assembly). The catalyst may facilitate curing of the coating on the rotors and/or the housing. The rotors and/or the housing may be coated or partially coated (e.g., before assembly or sub-assembly) before a final coating is applied on the assembled or sub-assembled twin rotor device. In certain embodiments, a dry low flash point solvent may be used to carry the coating. The coating and/or the solvent may be entrained in a fluid flow (e.g., an air flow) that is run through the twin rotor device. In certain embodiments, the coating is cured while the rotors are spinning. In certain embodiments, the solvent may evaporate before the coating material touches the surfaces of the rotor and/or the housing. In certain embodiments, multiple layers of the coating may be deposited (i.e., applied).
Another aspect of the present disclosure relates to improvements in reducing leakage of a twin rotor device. In particular, a method of treating the twin rotor device includes providing an at least partially assembled twin rotor device that includes a pair of rotors and a housing with a first port and a second port. The rotors and the housing define a set of working surfaces. The working surfaces are adapted to interface with each other and thereby interact with gas that passes through the twin rotor device. The method includes inducing a coating material to flow from the first port to the second port of the housing and thereby depositing a coating on the working surfaces. In certain embodiments, the first port is an inlet of the twin rotor device, and the second port is an outlet of the twin rotor device. In other embodiments, the first port is an outlet of the twin rotor device, and the second port is an inlet of the twin rotor device.
The method of applying the coating may include providing a coating material dispenser. The coating material dispenser may be fluidly connected to the first port of the housing. The coating material may be entrained in a carrier fluid by the coating material dispenser. In other embodiments, the second port of the housing is fluidly connected to the coating material dispenser.
In certain embodiments, a torque is applied to at least one of the rotors and thereby spins the rotors and thereby induces the coating material to flow through the twin rotor device. In certain embodiments, a differential pressure may be applied across the first port and the second port of the housing and thereby induce the coating material to flow and further induce the rotors to spin. The differential pressure may be created by applying a suction at one of the ports of the twin rotor device, and/or applying a pressure to the other of the ports of the twin rotor device.
A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and/or to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.
Reference will now be made in detail to example embodiments of the present disclosure. The accompanying drawings illustrate examples of the present disclosure. When possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
According to the principles of the present disclosure, clearances may be reduced and thereby internal leakage may be reduced within a twin rotor device (e.g., a Roots-type supercharger, a screw compressor, etc.) by applying a coating to internal surfaces of the twin rotor device after rotors and a housing assembly of the twin rotor device have been assembled together. In certain embodiments, the coating or coatings may be applied at a factory and be part of a finishing process of the twin rotor device. In certain embodiments, the twin rotor device may be refurbished by applying the coatings to a twin rotor device that has already been in service. Such refurbishment may refurbish the coatings of the internal surfaces. In other embodiments, such refurbishment may apply a coating to some or all of the internal surfaces for the first time. Such refurbishment may be combined with other new or refurbished parts (e.g., new seals, new bearings, etc.). Such refurbishment may be done in a factory setting or in a field setting.
Turning now to
The supercharger 200 further includes a set of rotors 220. The set of rotors 220 includes a first rotor 220A and a second rotor 220B. As illustrated at
The supercharger 200 further includes a housing assembly 210. As depicted, the housing assembly 210 includes a main housing 210a, an end cap portion 210b, and an input power portion 210c. The housing assembly 210 defines the inlet 202 and the outlet 204. The housing assembly 210 includes an input end 212 and an output end 214 (see
The housing assembly 210 includes a set of sealing surfaces 218. In the depicted embodiment, the main housing 210a of the housing assembly 210 defines sealing surfaces 218a, 218b of the sealing surfaces 218 that seal with the tips 228 of the rotors 220A, 220B when they are adjacent to each other (see
As depicted, the ends 222 of the lobes 230 of the rotors 220A, 220B may seal against a planar sealing surface 218d of the sealing surfaces 218 (see
Turning now to
The screw compressor 1200 further includes a set of rotors 1220. The set of rotors 1220 includes a first rotor 1220A and a second rotor 1220B. In the depicted embodiment, the first rotor 1220A is a male rotor, and the second rotor 1220B is a female rotor. As illustrated at
The screw compressor 1200 further includes a housing assembly 1210. As depicted, the housing assembly 1210 includes a main housing 1210a, a first end cap portion 1210b, and a second end cap portion 1210c. The housing assembly 1210 defines the inlet 1202 and the outlet 1204. The housing assembly 1210 includes an input end 1212 and an output end 1214 (see
The housing assembly 1210 includes a set of sealing surfaces 1218 (see
As depicted, the ends 1222 of the lobes 1230 of the rotors 1220A, 1220B may seal against a planar sealing surface 1218d of the sealing surfaces 1218 (see
As illustrated at
As depicted, an inlet volume 240 is defined by the circular sealing surface 218a, 218b, 1218a, 1218b, the planar sealing surface 218c, 1218c, and the screw surfaces 226, 1226, respectively. As defined herein, the inlet volume 240 is open to the inlet 202, 1202. Upon the rotors 220A, 220B, 1220A, 1220B rotating, portions of air within the supercharger 200 or the screw compressor 1200 become closed off from the inlet 202, 1202 and thereby are transferred from the inlet volume 240 to a transfer volume 242. The transfer volume 242 is closed off from both the inlet 202, 1202 and the outlet 204, 1204. As the rotors 220A, 220B, 1220A, 1220B further rotate, portions of air within the supercharger 200 or the screw compressor 1200 that were part of the transfer volume 242 are open to the outlet 204, 1204 and thereby become part of an outlet volume 244. In this way, air is moved through the supercharger 200 or the screw compressor 1200 by transferring through the inlet 202, 1202 and becoming part of the inlet volume 240, passing from the inlet volume 240 to the transfer volume 242, and further passing from the transfer volume 242 to the outlet volume 244. As the pressure at the outlet 204, 1204 is typically higher than the pressure at the inlet 202, 1202, air (or other gas) within the outlet volume 244 is urged to leak to the transfer volume 242, and air within the transfer volume 242 may be urged to leak to the inlet volume 240.
According to the principles of the present disclosure, clearances between the tips 228, 1228 of the rotor 220A, 1220A and the circular sealing surface 218a, 1218a, clearances between the tips 228, 1228 of the rotor 220B, 1220B and the circular sealing surface 218b, 1218b, clearances between the end 222, 1222 of the lobes 230, 1230 and the planar sealing surface 218d, 1218d, clearances between the end 224, 1224 of the lobes 230, 1230 and the planar sealing surface 218c. 1218c, and clearances between the intermeshing lobes 2301230 and valleys 232, 1232 of the rotors 220A, 220B, 1220A, 12208 are reduced and thereby leakage within the supercharger 200 and/or the screw compressor 1200 is reduced.
In the embodiment depicted at
In the embodiment depicted at
An application assembly, similar to the application assemblies 100, 100′, may be formed by assembling the screw compressor 1200 to application hardware similar to or the same as the application hardware 300. Furthermore, an application assembly, similar to the application assemblies 100, 100′, may be formed by assembling a twin rotor device to application hardware similar to or the same as the application hardware 300.
The outlet side hardware 500 may include a coating material collector 520; a flow device 530; a heat exchanger 540; a contoured flow passage 550; and/or flow control, instrument, and/or material injection/recovery equipment 560.
As schematically depicted, the equipment 560 is arranged in a housing with a first port 562 and a second port 564. The contoured flow passage 550 includes a first port 552 and a second port 554. A passage 556 connects the first port 552 to the second port 554. As depicted, the first port 552 is mounted to the passage 402 of the holding fixture 400. In other embodiments, the contoured flow passage 550 may connect directly to the outlet 204, 1204 of the supercharger 200, the screw compressor 1200, or other twin rotor device. The second port 554 of the contoured flow passage 550 may be fluidly connected to the first port 562 of the housing of the equipment 560.
The application hardware 300 may further include inlet side hardware 600. As depicted, the inlet side hardware 600 may mount directly to the inlet 202, 1202 of the supercharger 200, the screw compressor 1200, or other twin rotor device. In other embodiments, the holding fixture 400 holds the inlet side hardware 600 of the application hardware 300. The inlet side hardware 600 may include a material dispenser 610; a flow device 630; a heat exchanger 640; a contoured flow passage 650; and/or flow control, instrument, and/or material injection/recovery equipment 660.
As schematically depicted, the equipment 660 is arranged in a housing with a first port 662 and a second port 664. The contoured flow passage 650 includes a first port 652 and a second port 654. A passage 656 connects the first port 652 to the second port 654. As depicted, the first port 652 is mounted directly to the inlet 202, 1202 of the supercharger 200, the screw compressor 1200, or other twin rotor device. In other embodiments, the contoured flow passage 650 may connect to the passage 402 of the holding fixture 400. The second port 654 of the contoured flow passage 650 may be fluidly connected to the first port 662 of the housing of the equipment 660.
In alternative embodiments, a material dispenser 510 may be included with the outlet side hardware 500, and/or a material collector 620 may be included with the inlet side hardware 600 (see
In certain embodiments, a coating material 102 is entrained by a carrier material 104 (e.g., air, nitrogen, argon, etc.) by the material dispenser 510 or the material dispenser 610 (see
In certain backward running embodiments, excess coating material of the coating material 102 that passes through the supercharger 200, the screw compressor 1200, or other twin rotor device without adhering may be collected by the material collector 620 within the housing of the inlet side hardware 600. Likewise, in certain forward running embodiments, excess coating material of the coating material 102 that passes through the supercharger 200, the screw compressor 1200, or other twin rotor device without adhering may be collected by the material collector 520 within the housing of the outlet side hardware 500.
In certain embodiments, recirculation plumbing 310 is connected between the second port 664 of the housing of the equipment 660 and the second port 564 of the housing of the equipment 560. In particular, a first port 312 of the recirculation plumbing 310 may be connected to the second port 664 of the housing of the equipment 660, and a second port 314 of the recirculation plumbing 310 may be connected to the second port 564 of the housing of the equipment 560. In certain embodiments, the carrier material 104 is recirculated. In certain embodiments, the carrier material 104 along with unused coating material of the coating material 102 may be recirculated. In still other embodiments, the recirculation plumbing 310 is not used, and instead fresh coating material 102 and/or fresh carrier material 104 is used.
As the coating material 102 passes through the supercharger 200, the screw compressor 1200, or other twin rotor device, a portion of the coating material 102 will adhere to the sealing surfaces 218, 1218 of the housing assembly 210, 1210 and the ends 222, 224, 1222, 1224, screw surfaces 226, 1226, and tips 228, 1228 of the rotors 220A, 220B, 1220A, 1220B. The clearances between these surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228 may create leakage between the adjoining surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228. Such leakages will encourage the coating material 102 and/or the carrier material 104 to pass through the clearances and deposit the coating material 102 on the surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228. As the coating material 102 collects on the surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228, a coating 206, 1206 is formed on the surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228. As will be described hereinafter, the coating 206, 1206 may cure into a solidified coating surface 206, 1206. The coating 206, 1206 may form a permanent or a semi-permanent coating on the surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228.
In certain embodiments, the coating 206, 1206 is cured while the rotors 220A, 220B, 1220A, 1220B are spinning. In certain embodiments, the coating 206, 1206 may further wear-in and thereby further finish itself over a wear-in period. In certain embodiments, the coating material 102 and/or the carrier material 104 may be run through the supercharger 200, the screw compressor 1200, or other twin rotor device in a first direction from the inlet 202, 1202 to the outlet 204, 1204 and additional material may be applied by running the supercharger 200, the screw compressor 1200, or other twin rotor device in reverse with the coating material 102 and/or the carrier material 104 generally passing from the outlet 204, 1204 to the inlet 202, 1202. In certain embodiments, the coating material 102 may be first applied by running the supercharger 200, the screw compressor 1200, or other twin rotor device in the reverse direction.
Turning again to
As depicted, various sensors and application hardware are schematically illustrated in the outlet equipment group 560 and the inlet equipment group 660. In certain embodiments, the various sensors and application equipment may only be located in the outlet equipment group 560 or the inlet equipment group 660. Certain equipment and/or certain sensors may be located in both the outlet equipment group 560 and the inlet equipment group 660. In particular, the flow monitor 910 may include an outlet flow monitor 9100o and an inlet flow monitor 910i. Likewise, the pressure monitor 920 may include an outlet pressure monitor 920o and an inlet pressure monitor 920i. The pressure monitors 920o, 920i may be used to measure a differential pressure across the outlet 204, 1204 and the inlet 202, 1202 of the supercharger 200, the screw compressor 1200, or other twin rotor device. The temperature monitor 930 may include an outlet temperature monitor 930o and an inlet temperature monitor 930i. The state sensor 940 may include an outlet state sensor 940o and an inlet state sensor 940i. The state sensors 940, 940o, 940i may be used to measure an amount of the coating material 102 and/or the carrier material 104 and a percentage (e.g., by weight) of the coating material 102 and/or the carrier material 104 that are in solid, liquid, and/or gaseous form.
The control system 900 may send commands to the flow device 530 and/or the flow device 630 and thereby generate differential pressure across the inlet 202, 1202 and the outlet 204, 1204 of the supercharger 200, the screw compressor 1200, or other twin rotor device. The control system may further initiate coating material 102 and/or carrier material 104 being dispensed from the material dispenser 510 and/or the material dispenser 610.
By monitoring a rotational speed of the rotors 220A, 220B, 1220A, 1220B with the tachometer 950, the development of the coating 206, 1206 may be estimated. In particular, as the coating material 102 is converted into the coating 206, 1206, the various clearances within the supercharger 200, the screw compressor 1200, or other twin rotor device may be reduced and the leakage across the clearances may be reduced. Under a given differential pressure generated by the flow device 530 and/or the flow device 630, the speed of the rotors 220A, 220B, 1220A, 1220B may increase with decreasing internal clearances. By monitoring the increase in the rotor speed, the condition of the coating 206, 1206 may be estimated. Upon a certain condition of the coating material 206, 1206 being reached, the injection of the coating material 102 and/or the carrier material 104 may be suspended. As mentioned above, the supercharger 200, the screw compressor 1200, or other twin rotor device may continue to run after the suspension of the coating material 102 and/or the carrier material 104. In particular, the coating 206, 1206 may be allowed to cure while the supercharger 200, the screw compressor 1200, or other twin rotor device is running (i.e., the rotors 220A, 220B, 1220A, 1220B are spinning).
In certain embodiments, the rotary input 960 may be connected to the rotors 220A, 1220A and/or 220B, 1220B directly or indirectly. As illustrated at
In certain embodiments, the rotary input 960 may drive the supercharger 200, the screw compressor 1200, or other twin rotor device and induce flow through the supercharger 200, the screw compressor 1200, or other twin rotor device and create a pressure differential across the supercharger 200, the screw compressor 1200, or other twin rotor device (i.e., across the inlet 202, 1202 and the outlet 204, 1204). The flow created by the rotary input 960 when driving the supercharger 200, the screw compressor 1200, or other twin rotor device may entrain the coating material 102 and/or the carrier material 104 and thereby form the coating 206, 1206. The coating 206 may reduce internal clearances and thereby result in an increase in the pressure differential across the supercharger 200, the screw compressor 1200, or other twin rotor device. By monitoring the pressure differential across the supercharger 200, the screw compressor 1200, or other twin rotor device, the state of the coating 206, 1206 may be estimated. When a state of the coating 206, 1206 reaches a predetermined level, further application of the coating material 102 and/or the carrier material 104 may be suspended.
In addition to the aforementioned parameters of rotor rotational speed, rotor retarding torque, and pressure differential being used as feedback to monitor the state of the coating 206, 1206, leakage across the supercharger 200, the screw compressor 1200, or other twin rotor device may also be measured and/or estimated. The leakage may likewise be used to suspend further application of the coating material 102 and/or the carrier material 104 when a state of the coating 206, 1206 reaches a predetermined level.
As the coating material 102 and/or the carrier material 104 flow through the supercharger 200, the screw compressor 1200, or other twin rotor device, the coating material 102 and/or the carrier material 104 will generally follow a path of least resistance. The coating material 102 and/or the carrier material 104 will therefore seek out larger clearances between the surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228 and pass through and fill the larger clearances first. In certain embodiments, as the coating material 102 and/or the carrier material 104 flow through the clearances, thermodynamic properties of the coating material 102 and/or the carrier material 104 may change and thereby assist in depositing the coating material 102 as the coating 206, 1206. In certain embodiments, leakage across the clearances produces heat from work being provided by the air, the coating material 102, and/or the carrier material 104 flowing across a pressure drop. The heat from the leakage may be used to assist in depositing the coating material 102 as the coating 206, 1206.
The supercharger 200, the screw compressor 1200, or other twin rotor device may be run without the coating material 102 and/or without the carrier material 104 for a given period to heat the supercharger 200, the screw compressor 1200, or other twin rotor device. Upon a desired temperature profile of the supercharger 200, the screw compressor 1200, or other twin rotor device being reached, the coating material 102 and/or the carrier material 104 may be applied.
As mentioned above, the coating material 102 may include powder coating components or other components that may be activated or otherwise affected by application of electricity (e.g., electric charge). As illustrated at
The carrier material 104 may include a low flash point solvent. The coating material 102 may be carried by the carrier material 104, and the carrier material 104 may evaporate prior to the coating material 102 reaching the surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228. The coating material 102 may thereby be applied to the surfaces 218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228 dry.
Turning now to
In various embodiments, twin rotor devices with coatings such as the coatings 206, 1206, described above, may be used to pump compressible and/or non-compressible fluids. In various embodiments, twin rotor devices with coatings such as the coatings 206, 1206, described above, may be used to extract shaft power from compressible and/or non-compressible fluids.
From the forgoing detailed description, it will be evident that modifications and variations can be made without departing from the spirit and scope of the disclosure.
This application is a U.S. National Stage Application of PCT/US2015/038789, filed on Jul. 1, 2015, which claims benefit of U.S. Patent Application Ser. No. 62/020,494 filed on Jul. 3, 2014, and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/038789 | 7/1/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/004179 | 1/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4828467 | Brown | May 1989 | A |
6506037 | Bush | Jan 2003 | B1 |
7866966 | Swartzlander | Jan 2011 | B2 |
20020127332 | Bertellotti | Sep 2002 | A1 |
20030126733 | Bush | Jul 2003 | A1 |
20070259116 | Nolan | Nov 2007 | A1 |
20080292486 | Ouwenga | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
06-170862 | Jun 1994 | JP |
10-299676 | Nov 1998 | JP |
2002-213381 | Jul 2002 | JP |
2013137266 | Sep 2013 | WO |
Entry |
---|
JPO machine translation of JP 10-299676 A, published Nov. 1998. (Year: 1998). |
International Search Report and Written Opinion of the International Searching Authority for corresponding International Patent Application No. PCT/US2015/038789 dated Sep. 25, 2015, 14 pgs. |
Number | Date | Country | |
---|---|---|---|
20170146012 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62020494 | Jul 2014 | US |