Claims
- 1. A file system for a computer, the file system comprising:
N storage devices, where N is an integer greater than zero; N primary file servers, each file server being operatively connected to a corresponding storage device for accessing files therein; and a secondary file server operatively connected to at least one of the N storage devices; wherein upon a failure of one of the N primary file servers, one of the N storage devices switches its connection to the secondary file server and one or more of the remaining storage devices switch their connections to a primary file server other than the failed file server as necessary so as to prevent a loss in performance and to provide each storage device with an operating file server.
- 2. The file system of claim 1, wherein each of the N storage devices comprises a plurality of disk drive.
- 3. The file system of claim 2, wherein the plurality of disk drives comprises a reliable array of inexpensive disks (RAID).
- 4. The file system of claim 1, wherein each of the N primary and the secondary file servers are a PC.
- 5. The file system of claim 1, wherein at least one of the N storage devices has first and second connections, the first connection operatively connecting the storage device to one of the primary file servers and the second connection operatively connecting the storage device to the secondary file server.
- 6. The file system of claim 5, wherein the first and second connections are SCSI bus connections.
- 7. The file system of claim 6, wherein at least one of the primary and the secondary file servers have a two-channel SCSI controller, one of the two-channels being operatively connected to one of the N storage devices and the other of the two-channels being operatively connected to another of the N storage devices.
- 8. A computer system comprising:
I/O nodes operatively connected to a file system; the file system comprising, N storage devices, where N is an integer greater than zero, N primary file servers, each file server being operatively connected to a corresponding storage device for accessing files therein; and a secondary file server operatively connected to at least one of the N storage devices, wherein upon a failure of one of the N primary file servers, one of the N storage devices switches its connection to the secondary file server and one or more of the remaining storage devices switch their connections to a primary file server other than the failed file server as necessary so as to prevent a loss in performance and to provide each storage device with an operating file server.
- 9. The computer system of claim 8, wherein each of the N storage devices comprises a plurality of disk drives.
- 10. The computer system of claim 9, wherein the plurality of disk drives comprises a reliable array of inexpensive disks (RAID).
- 11. The computer system of claim 8, wherein each of the N primary and the secondary file servers are a PC.
- 12. The computer system of claim 8, wherein at least one of the N storage devices has first and second connections, the first connection operatively connecting the storage device to one of the primary file servers and the second connection operatively connecting the storage device to the secondary file server.
- 13. The computer system of claim 12, wherein the first and second connections are SCSI bus connections.
- 14. The computer system of claim 13, wherein at least one of the primary and the secondary file servers have a two-channel SCSI controller, one of the two-channels being operatively connected to one of the N storage devices and the other of the two-channels being operatively connected to another of the N storage devices.
- 15. A method for maintaining full performance of a file system in the presence of a failure, the file system having N storage devices, where N is an integer greater than zero, N primary file servers, each file server being operatively connected to a corresponding storage device for accessing files therein, and a secondary file server operatively connected to at least one of the N storage devices, the method comprising:
switching the connection of one of the N storage devices to the secondary file server upon a failure of one of the N primary file servers; and switching the connections of one or more of the remaining storage devices to a primary file server other than the failed file server as necessary so as to prevent a loss in performance and to provide each storage device with an operating file server.
- 16. A computer program product embodied in a computer-readable medium for maintaining full performance of a file system in the presence of a failure, the file system having N storage devices, where N is an integer greater than zero, N primary file servers, each file server being operatively connected to a corresponding storage device for accessing files therein, and a secondary file server operatively connected to at least one of the N storage devices, the computer program product comprising:
computer readable program code means for switching the connection of one of the N storage devices to the secondary file server upon a failure of one of the N primary file servers; and computer readable program code means for switching the connections of one or more of the remaining storage devices to a primary file server other than the failed file server as necessary so as to prevent a loss in performance and to provide each storage device with an operating file server.
- 17. A program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for maintaining fall performance of a file system in the presence of a failure, the file system having N storage devices, where N is an integer greater than zero, N primary file servers, each file server being operatively connected to a corresponding storage device for accessing files therein, and a secondary file server operatively connected to at least one of the N storage devices, the method comprising:
switching the connection of one of the N storage devices to the secondary file server upon a failure of one of the N primary file servers; and switching the connections of one or more of the remaining storage devices to a primary file server other than the failed file server as necessary so as to prevent a loss in performance and to provide each storage device with an operating file server.
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] The present invention claims the benefit of commonly-owned, co-pending U.S. Provisional Patent Application Serial No. 60/271,124 filed Feb. 24, 2001 entitled MASSIVELY PARALLEL SUPERCOMPUTER, the whole contents and disclosure of which is expressly incorporated by reference herein as if fully set forth herein. This patent application is additionally related to the following commonly-owned, co-pending United States Patent Applications filed on even date herewith, the entire contents and disclosure of each of which is expressly incorporated by reference herein as if fully set forth herein. U.S. patent application Ser. No. (YOR920020027US1, YOR920020044US1 (5270)), for “Class Networking Routing”; U.S. patent application Ser. No. (YOR920020028US1 (15271)), for “A Global Tree Network for Computing Structures”; U.S. patent application Ser. No. (YOR920020029US1 (15272)), for ‘Global Interrupt and BarrierNetworks”; U.S. patent application Ser. No. (YOR920020030US1 (15273)), for ‘Optimized Scalable Network Switch”; U.S. patent application Ser. No. (YOR920020031US1, YOR920020032US1 (15258)), for “Arithmetic Functions in Torus and Tree Networks’; U.S. patent application Ser. No. (YOR920020033US1, YOR920020034US1 (15259)), for ‘Data Capture Technique for High Speed Signaling”; U.S. patent application Ser. No. (YOR920020035US1 (15260)), for ‘Managing Coherence Via Put/Get Windows’; U.S. patent application Ser. No. (YOR920020036US1, YOR920020037US1 (15261)), for “Low Latency Memory Access And Synchronization”; U.S. patent application Ser. No. (YOR920020038US1 (15276), for ‘Twin-Tailed Fail-Over for Fileservers Maintaining Full Performance in the Presence of Failure”; U.S. patent application Ser. No. (YOR920020039US1 (15277)), for “Fault Isolation Through No-Overhead Link Level Checksums’; U.S. patent application Ser. No. (YOR920020040US1 (15278)), for “Ethernet Addressing Via Physical Location for Massively Parallel Systems”; U.S. patent application Ser. No. (YOR920020041US1 (15274)), for “Fault Tolerance in a Supercomputer Through Dynamic Repartitioning”; U.S. patent application Ser. No. (YOR920020042US1 (15279)), for “Checkpointing Filesystem”; U.S. patent application Ser. No. (YOR920020043US1 (15262)), for “Efficient Implementation of Multidimensional Fast Fourier Transform on a Distributed-Memory Parallel Multi-Node Computer”; U.S. patent application Ser. No. (YOR9-20010211US2 (15275)), for “A Novel Massively Parallel Supercomputer”; and U.S. patent application Ser. No. (YOR920020045US1 (15263)), for “Smart Fan Modules and System”.
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/US02/05614 |
2/25/2002 |
WO |
|