The present invention relates to twist beams. More specifically, the present application illustrates embodiments of the present invention, including embodiments relating to a vehicle twist beam axle.
U.S. Pat. Nos. 6,616,157 to Christophliemke et al.; 6,401,319 to Hicks et al.; 5,520,407 to Alatalo et al.; 5,518,265 to Buthala et al.; 5,409,254 to Minor et al.; and 5,246,248 to Ferguson et al. each disclose a vehicle rear suspension apparatus. The rear suspension apparatus commonly includes a cross beam that includes a twist beam and a separate torsion beam to provide bending and torsional stiffness. Known twist beams with separate torsion bars are relatively expensive and the shear center of such twist beams is relatively low.
In other twist beams, such as described in U.S. Pat. Nos. 5,324,073 to Alatalo et al.; 5,409,255 to Alatalo et al; 5,518,265 to Buthala et al.; 5,520,407 to Alatalo et al.; 6,059,314 to Streubel et al.; 6,119,501 to Hansen et al.; 6,145,271 to Kössmeier et al.; 6,523,841 to Gläser et al.; 6,616,157 to Christophliemke et al.; 6,708,994 to Etzold; 6,758,921 to Streubel et al.; 6,829,826 to Herzig; and U.S. Patent Publication no. US020020117890A1, a hollow tube is formed into an inverted U shape and acts as the transverse support of the suspension apparatus. These twist beams avoids the use of a twist beam and a separate torsion beam. However, these twist beams are relatively expensive to manufacture.
One aspect of the invention relates to a twist beam axle assembly. The assembly has a twist beam having an inverted U-Shaped cross section and a torsion member attached to the twist beam along a bight portion thereof.
Another aspect of the invention relates to a twist beam axle assembly having an open twist beam and a torsion member or cap coupled thereto. The twist beam has a longitudinal axis and an open, cross-sectional configuration transverse to the longitudinal axis. The cross-sectional configuration has a bight portion, a first projection extending from a first edge of the bight portion and a second projection extending from a second edge of the bight portion. The cross-sectional configuration defines an open cavity extending between the first and second projections. The bight portion has an inner surface partially defining the open cavity and an outer surface being opposite to the inner surface. The torsion member is rigidly secured to the bight portion adjacent the outer surface of the bight portion. The torsion member is a separately-formed member with respect to the first member and is attached to the first member. A first arm is coupled to a first end portion of the twist beam and has a wheel hub attaching member. A second arm is coupled to a second end of the twist beam and has a second wheel hub attaching member.
Another aspect of the invention is a method of forming a twist beam axle assembly, comprising: forming a twist beam having a longitudinal axis and an open, cross-sectional configuration transverse to the longitudinal axis, the cross-sectional configuration having a bight portion, a first projection extending from a first end of the bight portion and a second projection extending from a second end of the bight portion, the cross-sectional configuration having an open cavity extending between the first and second projections and being defined by the first projection, the second projection, and the bight portion, the bight portion having an inner surface partially defining the open cavity and an outer surface being opposite to the inner surface; forming a torsion member; rigidly securing the torsion member to the bight portion of the first portion adjacent the outer surface of the bight portion, the first portion and the torsion member forming a twist beam; attaching a first arm to a first end portion of the twist beam; attaching a second arm to a second end portion of the twist beam; attaching a first wheel hub to the first arm; and attaching a second wheel hub to the second arm.
Another aspect of the invention is a method of forming a twist beam axle assembly. A twist beam is roll formed to have an inverted U-shape configuration in cross section, having a bight portion, a first projection or leg extending from a first edge of the bight portion and a second projection or leg extending from a second edge of the bight portion. A torsion member is attached to the bight portion as the twist beam is roll formed. Preferably, the torsion member is seam welded to the twist beam enabling the entire interface between the torsion member and the twist beam to be integrally connected.
Other aspects, features, and advantages of this invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, the principles of this invention.
The accompanying drawings facilitate an understanding of the various embodiments of this invention. In such drawings:
Assembly 10 basically includes a twist beam 14 and two side arm assemblies 16 and 18. The twist beam 14 extends between the side arm assemblies 16 and 18 with a side arm assemblies 16 and 18 coupled to respective ends 20 and 22 of the twist beam 14. Each side arm assembly 16 and 18 includes a side arm 24 and 26, respectively, which is directly attached to the twist beam 14. The remaining illustrated parts for each of the side arm assemblies 16 and 18 are substantially identical for each side arm assembly 16 and 18. That is, each side arm assembly 16 and 18 includes, among other things, a wheel hub 30 and wheel hub mount 32, a spring seat 34, a shock absorber 36 and a bushing connection 38. Each side arm assembly 16 and 18 is attached to the space frame 12, including by an attachment via the shock absorber 36 and the bushing connection 38.
The side arm assemblies 16 and 18, except for their connection to twist beam 14 can be substantially as those known in the art. Twist beams as generally known in the art often contain a twist beam and a separate torsion beam to provide bending and torsional stiffness. However, the embodiments of the subject application illustrate a twist beam 40 with an integral torsion member 42 to provide a cost effective way for providing a twist beam axle with sufficiently high bending stiffness and sufficiently moderate torsional stiffness. Additionally, through the use of an integral torsion member 42, the integral twist beam 14 of the subject application provides for a raised shear center of the twist beam relative to the shear center of a twist beam utilizing a separate torsion bar. Further, the integral twist beam 14 allows for a cost effective method of tailoring the roll rate of a twist axle.
As best seen in
Of course, if the twist beam is sufficiently rigid without a stiffening rib, indentation 60 may be omitted, as shown in
The twist beam 40 can be made of a variety of appropriate materials and made in a variety of appropriate ways. For example, twist beam 40 may be stamped, roll formed, or extruded and may be made of, for example, steel or aluminum. Twist beam 40 has a first end 62 that is configured for attaching to side arm 24. Twist beam 40 also has a second end 64 that is configured for attaching to side arm 26.
Torsion member 42 may also be made of a variety of appropriate materials and made in a variety of appropriate ways. For example, torsion member 42 may be stamped, roll formed, or extruded and may be made of an appropriate material such as steel or aluminum. Of course, the type of material of the torsion member 42 may depend upon the type of material used for twist beam 40. Twist beam 40 and torsion member 42 may be formed, shaped, and configured as necessary to produce the desired bending stiffness and torsional stiffness properties needed in the twist beam axle.
As seen in
The ability to separately manufacture the twist beam 40 and the torsion member 42 and then subsequently, rigidly attach the two to form an integral twist beam and torsion member provides flexibility and efficiencies in the manufacturing of twist beam axles. For example, it provides the ability to have stocks of various types of twist beams 40 and torsion members 42 that that may be made integral with each other and provide selective bending stiffness and torsional stiffness characteristics in a twist beam 14. In particular, two different motor vehicles may employ the same, basic twist beam 40, but may have different torsional members 42 so that even though both vehicles use the same twist beam, they employ different torsional members and they provide different levels of, for example, roll rate or torsional stiffness since a different torsion member is used.
As mentioned, by altering the specifics of the twist beam 40 and the torsion member 42, such as; shape, thickness, configuration, material, and connection, the twist beam 14 can be tailored for specific applications to produce desired bending stiffness and torsional stiffness. Further, the entire twist beam 14 may be produced by extruding the twist beam 40 and the torsion member 42 as a one-piece, unitary and integrally formed member.
The cross-sectional configuration of twist beam 140 in
The embodiment of
Among other things, the embodiments illustrate various ways to create a stiffened bight portion, for example by a small closed cavity section or hollow channel such as 70, 170, 270, 370, together with a larger open section such as 54, 154, 354. This ability to have a smaller closed section and a larger open section can increase the torsional constant of the section enough so that a separate torsion bar is not needed, while, not increasing the torsional constant so high that the twist beam will fail in normal use.
In the following table, the relative characteristics of the twist beams of the present invention are listed:
It is apparent from this Table that the beam stiffness can be tailored to specific requirements and specifications while utilizing a common twist beam and modifying or selecting a different torsion beam and/or method of securement and/or the amount of contact interface between the twist beam and the torsion beam.
In the above example, a torsion constant of approximately the same order of magnitude can be achieved by several methods. The baseline torsional constant is 14859. The present invention can achieve a torsional constant by several methods. In the first example, the torsion beam thickness is 4.0 mm with a longitudinal groove that forms a hollow channel on the bight portion. In the next example, the torsion beam thickness if 4.8 mm with a relatively smaller longitudinal groove, and hence greater contact interface between the torsion beam and the twist beam. In the last example, the torsion beam thickness is 4.8 mm and seam welded to the twist beam. In all three examples, the torsion constant is relatively equivalent.
The foregoing specific embodiments have been provided to illustrate the structural and functional principles of the present invention, and are not intended to be limiting. To the contrary, the present invention is intended to encompass all modifications, alterations, and substitutions within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA06/00390 | 3/16/2006 | WO | 00 | 5/31/2007 |
Number | Date | Country | |
---|---|---|---|
60661932 | Mar 2005 | US |