This application is a §371 National Stage Application of PCT International Application No. PCT/EP2014/061937 filed Jun. 9, 2014 claiming priority of EP Application No. 13174225.6, filed Jun. 28, 2013.
The present invention relates to a long twist drill for metal machining.
Deep hole drilling applications can often be found in the automotive, mould & die industries and general engineering. During metal cutting operation chips are produced at the tip end of the shank of the twist drill, said chips being formed and transported from the tip end of the shank of the twist drill to the opposite end of the shank of the twist drill. In metalworking industries there are numerous deep holes produced daily. Deep holes can be defined as being at least 15 times the hole diameter. Drilling tools predominantly used nowadays, such as gun drills and HSS drills usually result in very long process times. In general, drilling becomes more and more difficult with increasing drilling depth. More recent drills have pushed the constraints of tool design further than ever by using a solid carbide twist drill with internal coolant supply to meet the demands of deep hole drilling. The new twist drills can be used for most materials and are very tolerant in terms of the coolant type and feed applied. During rotation the chips are forced out of the hole by a drill helix and chip transport takes place in flutes. This allows the reliable transport of large, jamming chips such as the ones produced by long-chip materials. The chip transport is particularly important when the drilled depth is relatively large compared to the nominal diameter. Twist drills are often coated with a hard material to increase tool life by enhancing the wear resistance. JP 2007276076 discloses a long twist drill. In spite of the recent developments there is a need to further optimize the long twist drills.
An object of the present invention is to provide a twist drill optimized for drilling deep holes, inter alia by keeping low cutting forces and good chip flow and drilling holes with good accuracy and surface finish while maintaining favourable production rates.
The features and advantages of the present invention are well understood by reading the following detailed description in conjunction with the drawings in which like numerals indicate similar elements and in which:
The present invention relates to a twist drill 10 comprising a shank 12 and a drill body 14 having a drill tip 16 as seen in
The shank and the twist drill body are preferably, at least partly, cylindrical about a longitudinal centre axis CL. The twist drill preferably has a maximum diameter D of from about 3 to about 12 mm, preferably from about 6.0 to about 8 mm. The shank 12 is suitable for insertion into a holder. The twist drill has a total length L. A quota L/D may be chosen within a range of 30 to 50. The drill body 14 has a length which can be divided into two lengths L1 and L2, see
The twist drill tip or forward end 16 may have two identical cutting segments 18 and may have two identical flutes 20. The cutting segments 18 and flutes 20 are equally spaced circumferentially about the longitudinal centre axis or axis of rotation CL. The axis of rotation thus defines a forward-to-rear direction of the twist drill 10, with the twist drill tip 16 being at the forward end. Two flutes 20 extend helically from the tip 16 to an end 20A in the vicinity of the shank 12. A typical value for the helix angle 24 in the axial mid region of the twist drill body 14 is 20° to 30°. Two lands 22 are created when the flutes 20 are produced in the drill blank, which lands also extend helically. The lands 22 bridge the flutes 20 in the circumferential direction of the twist drill. Each cutting segment 18 has a first segment relief surface 26, which extends radially outwardly, away from the axis of rotation CL to a peripheral surface of the land 22 and may have a second segment relief surface 27. The first segment relief surface 26 forms a first relief surface and the second segment relief surface 27 forms a second relief surface. A chisel edge 28 is located at the front end of the twist drill 10. The chisel edge 28 has a length of 0.25 to 0.40 mm. The chisel edge 28 is defined by two chisel sub-edges 30. Each chisel sub-edge 30 is formed by intersection of an adjacent segment relief surface 26 and a gash 32. The gash 32 extends axially about halfway to a line intersecting the radially outer ends of the main cutting edges 34 in a view like
The intermediate cutting edge 35 may be substantially straight and connects to the chisel sub-edge 30 and the main cutting edge 34 via radii. An extension of the intermediate cutting edge 35 may intersect the periphery of the twist drill at or close to the first margin 46 at an opposed side of the chisel edge 28 when viewed in an end view like in
The gash 32 has first and second gash surfaces 36, 38. The first and second gash surfaces 36, 38 may be perpendicular to each other, or form an obtuse angle of preferably 91 to 93°. The first gash surface 36 may be planar. The first gash surface 36 meets the first segment relief surface 26 at the chisel sub-edge 30. The second gash surface 38 may connect to the second segment relief surface 27, and may be planar or concave, and may connect to a chip flute 20. The first and second gash surfaces 36, 38 meet at a line or curve FGR which substantially forms an axial web thinning angle GAA with the centre axis CL. In accordance with some embodiments, the angle GAA may be in the range of 40 to 50°, preferably 42 to 46°, and most preferably about 44°. In case the line is a curve FGR, it is approximated by a line intersecting the end points thereof to define the angle GAA together with the centre axis CL. The angle GAA of for example about 44° together with a web or core diameter of 0.4×D at the tip 16 creates a small, easy movable chip. The web or core diameter of 0.4×D is measured closest to the tip 16 without being affected by the gashes 32. The web thickness is here defined as the thickness of the web, in an end view, being affected by the gashes 32. The web thickness may be 0.12 to 0.18 mm.
In the twist drill, a back taper of web or core diameter may be applied. The web or core is the metal column, shown in phantom in
The back taper ends at length L1 and transfers into a cylindrical core or web with a constant diameter DC along most of the length L2. The axially inner end 20A of the flute 20 may be shallower than the rest of the flute 20 to avoid sudden dimensional changes.
In the twist drill, a back taper of the twist drill outer diameter D may also be applied. Back taper of the twist drill diameter D may be 0.33 to 0.35 per 100 mm within the range of the length L1, such as for the 50 first mm from the tip side 40. The twist drill outer diameter D is substantially constant axially rear of the discussed outer back taper.
Each land 22 comprises a helical recess 44 extending within the range of the length L1, such as for the 50 first mm from the tip side 40. Each recess 44 creates a first margin 46 and a second margin 48 in the land 22 for supporting the drill in the hole. The terms “leading” and “trailing” refer to a rotational direction R of the twist drill. All margins are preferably located on a common circle in a given axial cross-section and are preferably coaxial with the longitudinal centre axis CL. The new drill has four-facet point geometry for good centering capability. The double margins of the twist drill not only have influence on the guiding functions, but may also reduce the cutting torque.
The chip flutes 20 are preferably polished to a surface fineness Ra of more than 0.001 but less than 0.1 μm, preferably to the range of 0.030 to 0.055 μm along at least at 80% of the axial extension of the flute from the tip end. Such surface fineness makes flow of chips and liquid uninterrupted.
The twist drill 10 is provided with holes 42 for fluid opening in the tip 16 or in the relief segments 27 for transport of fluid to wash away chips and to cool and lubricate the twist drill.
Cutting Conditions:
The total length L of the new twist drill, or the twist drill according to an aspect of the present invention, is 279 mm and the old generation twist drill length is 279 mm. The test set-up was identical for both drill types. The drills drilled 34.6×D deep. Both drill types were coated by ten layers of TiAlN and then one layer of TiN within the L1 area.
Relevant features of the two different drill types are shown in the table below.
Drilling cycle: All test drillings were made using predrilled holes or pilot holes with diameter 6.6 mm and 20 mm hole depth to reduce risks for drill breakage.
The results can be seen in
The provision of a largest web diameter DW at the tip 16 compacts the chips more than old generation drills do, such that the spring back or rebound of each chip will require less space to travel in the flutes. On the other hand, the new twist drill will require relatively more spindle power initially as can be seen in
It is evident that the combination of features in a twist drill according to the present invention provides numerous advantages such as excellent hole quality, lower power requirements, less noise, long consistent tool life and smaller chips than old generation twist drills.
Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without departing from scope of the invention as defined in the appended claims.
The disclosures in EP Patent Application No. 13174225.6, from which this application claims priority, are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
13174225 | Jun 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/061937 | 6/9/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/206716 | 12/31/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4583888 | Mori | Apr 1986 | A |
4983079 | Imanaga | Jan 1991 | A |
5678960 | Just | Oct 1997 | A |
7740426 | Yamamoto | Jun 2010 | B2 |
7762748 | Yanagida | Jul 2010 | B2 |
20040101379 | Mabuchi et al. | May 2004 | A1 |
20060275092 | Yamamoto | Dec 2006 | A1 |
20090047080 | Schweighofer et al. | Feb 2009 | A1 |
20090279965 | Soittu | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
60056809 | Apr 1985 | JP |
02237712 | Sep 1990 | JP |
2001079707 | Mar 2001 | JP |
2002126925 | May 2002 | JP |
2005022064 | Jan 2005 | JP |
2005144640 | Jun 2005 | JP |
2007276076 | Oct 2007 | JP |
2008142834 | Jun 2008 | JP |
2009018360 | Jan 2009 | JP |
2012020357 | Feb 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20160151842 A1 | Jun 2016 | US |