This invention relates to the field of tethered floats. In some scenarios, it is desirable to hold a float at a certain altitude and orientation above the seafloor. Previously, this type of mooring required the use of divers and/or the assistance of a remotely-operated vehicle to deploy and/or recover. There is a need for an improved mooring system that resists rotation of the float.
Described herein is a mooring system comprising a ballast platform and a chain. The chain comprises a plurality of links that are pivotally connected to each other via parallel pivot pins such that the chain is configured to not rotate about a vertical axis that is orthogonal to axes of rotation of the pivot pins. The chain has a proximal end that is attached to a top of the ballast platform and a distal end that is configured to be attached to a buoyant object.
Another embodiment of the mooring system is disclosed herein that comprises a buoyant object, a chain, a ballast cage, and an acoustic release transponder. The chain comprises a plurality of links, each of which is pivotally connected to adjoining links by parallel pivot pins in such a way so as to inhibit any twisting of the chain between distal and proximal ends of the chain. The distal end of the chain is connected to the buoyant object. The ballast cage is configured to hold ballast weights, and the ballast cage is connected to the proximal end of the chain. The acoustic release transponder is connected between the ballast cage and the ballast weights such that no torsion loads are transferred from the chain to the acoustic release transponder when the ballast cage is resting on a floor of a body of water.
Another embodiment of the mooring system is disclosed herein that comprises a ballast cage, an acoustic release transponder, and a chain. The ballast cage is configured to hold ballast weights. The acoustic release transponder is connected to the ballast cage and configured to release the ballast weights out of a bottom of the ballast cage upon receipt of a given acoustic signal. The chain comprises a plurality of links that are pivotally connected to each other via parallel pivot pins such that the chain is configured to not rotate about a vertical axis that is orthogonal to an axis of rotation of the pivot pins. In this embodiment, the proximal end of the chain is attached to a top of the ballast cage and the distal end is configured to be attached to a buoyant object.
Throughout the several views, like elements are referenced using like references. The elements in the figures are not drawn to scale and some dimensions are exaggerated for clarity.
The disclosed system below may be described generally, as well as in terms of specific examples and/or specific embodiments. For instances where references are made to detailed examples and/or embodiments, it should be appreciated that any of the underlying principles described are not to be limited to a single embodiment, but may be expanded for use with any of the other methods and systems described herein as will be understood by one of ordinary skill in the art unless otherwise stated specifically.
References in the present disclosure to “one embodiment,” “an embodiment,” or any variation thereof, means that a particular element, feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrases “in one embodiment,” “in some embodiments,” and “in other embodiments” in various places in the present disclosure are not necessarily all referring to the same embodiment or the same set of embodiments.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” or any variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, un-less expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or.
Additionally, use of words such as “the,” “a,” or “an” are employed to describe elements and components of the embodiments herein; this is done merely for grammatical reasons and to conform to idiomatic English. This detailed description should be read to include one or at least one, and the singular also includes the plural unless it is clearly meant otherwise.
The ballast platform 12, which also may be referred to herein as the ballast cage, may be any weight, or container capable of holding a weight, that has a negative buoyancy with respect to the medium in which it is situated. It is envisioned that the mooring system 10 will be most useful in water environments (e.g., seawater, freshwater, brackish water, and brine), but it is to be understood that the mooring system 10 is not limited to water environments, but may also be used in air or other mediums where stable orientation of a platform is desired. Many different configurations and variations are possible.
The chain 14 may be any size or shape where the links all pivot with respect to each other, and where the pivot axes of all link connections are parallel, such that rotation about the vertical axis 20 is minimized. The chain 14 may be made of any material. Suitable examples of material from which the chain 14 may be made include, but are not limited to, plastic, aluminum, stainless steel, and copper-based alloys. The buoyant object 30 may be any object with sufficient buoyancy to fully extend the chain 14 to its full height between the ballast platform 12 and the buoyant object 30. Suitable examples of the buoyant object 30 include, but are not limited to, a surface vessel, a submarine, a lighter-than-air vehicle, a surface buoy, an underwater float, a sensor node, and a balloon.
The buoyant object may be selected to have a buoyancy that is greater than the combined weight of the chain 14, the acoustic release transponder 42, and the ballast cage 12 when empty. It is also desirable that the buoyant object 30 have a buoyancy that is less than the combined weight of the chain 14, the acoustic release transponder 42, and the ballast cage 12 when holding the ballast weights 44. Upon release of the ballast weights 44, the buoyant object 30 should have sufficient buoyancy to lift the chain 14, the ballast cage 12, and the acoustic release transponder 42 off of the seafloor 33. In most embodiments, the buoyant object 30 will be capable of lifting the mooring system 10 to the surface 32, but it is to be understood that there may be operational scenarios where it will be desirable to configure the buoyant object 30 to lift the mooring system 10 off of the seafloor 33, but not raise it all the way to the surface 32. The acoustic release transponder 42 may be any release device capable of releasing the ballast weights 44 upon receiving a given acoustic signal. In some embodiments, a dual acoustic release system, as is known in the art, may be used to provide redundancy such that as long as one release actuates, the ballast weights 44 will be released. It is to be understood that other release mechanisms besides acoustic release transponders may be used as part of the mooring system 10. For example, a power cable may be run to the ballast cage 12 and a release may be used that is triggered by a signal transmitted over this cable. Other suitable release mechanisms include, but are not limited to, galvanic releases, timers, pressure-sensitive triggers, and other releases as are known in the art.
In one example embodiment of the mooring system 10, the links 16 are made of hard anodized 6061-T6 aluminum, and the pivot pins 18, which are held in place by retaining rings, are made of hard anodized 7075-T6 aluminum. An RC9 “loose running fit” clearance in some embodiments is desirable between the pivot pins 18 and the links 16, or rather between the pivot pins 18 and the bushings, if bushings are used between the pivot pins 18 and the links 16. Also, in one embodiment of the mooring system 10, a secondary float may be attached to the buoyant object 30 via a separate release (e.g., acoustic, galvanic, timed, etc.) to slow the descent of the mooring system 10. In one example embodiment of the mooring system 10, the ballast cage connection point 40 is configured to pivot about an axis 46 that is perpendicular to the pivot pins 18 such that the chain 14 extends vertically from the ballast cage 12 when the ballast cage 12 comes to rest on a sloped underwater surface 45, such as shown in
From the above description of the mooring system 10, it is manifest that various techniques may be used for implementing the concepts of the mooring system 10 without departing from the scope of the claims. The described embodiments are to be considered in all respects as illustrative and not restrictive. The method/apparatus disclosed herein may be practiced in the absence of any element that is not specifically claimed and/or disclosed herein. It should also be understood that the mooring system 10 is not limited to the particular embodiments described herein, but is capable of many embodiments without departing from the scope of the claims.
The United States Government has ownership rights in this invention. Licensing and technical inquiries may be directed to the Office of Research and Technical Applications, Naval Information Warfare Center Pacific, Code 72120, San Diego, Calif., 92152; voice (619) 553-5118; ssc_pac_t2@navy.mil. Reference Navy Case Number 113538.
Number | Name | Date | Kind |
---|---|---|---|
3664122 | Linnenbank | May 1972 | A |
RE28746 | Bruce | Mar 1976 | E |
4637335 | Pollack | Jan 1987 | A |
Entry |
---|
Ross, Steve; Benthic Landers: Critical Tools For Use in Deep-sea Research; Available online at https://oceanexplorer.noaa.gov/explorations/12midatlantic/background/benthiclanders/benthiclanders.html; Estimated publication date: 2012. |
Number | Date | Country | |
---|---|---|---|
20220169345 A1 | Jun 2022 | US |