The present disclosure relates to a heat and moisture exchanger and more particularly to a twist to lock heat and moisture exchanger.
This section provides background information related to the present disclosure which is not necessarily prior art.
Loss of nasal function as a result of laryngectomy can result in functional changes to tracheal bronchial mucosa and lung function. These changes are due to dry cool air replacing the warm humid air which was provided by the function of the nose and nasal passage. A total laryngectomy surgery also results in a decreased resistance which has effect on lung function. These functional changes can result in an increase in mucus production, an increase in coughing, and an increase in chest infections.
Daily use of a heat and moisture exchanger (hereinafter HME) reduces loss of heat and moisture from the tracheal and bronchial mucosa and lungs, and provides the lungs with increased resistance. This warm, humidified and filtered air helps keep the mucosa from drying out and the increased resistance keeps the alveoli of the lungs from collapsing resulting in better lung function.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A twist to lock heat and moisture exchanging device includes a housing having a first opening that is adapted to open to a tracheostoma and a second opening that opens to ambient. A foam filter is disposed in a passage between the first opening and the second opening and a closure member is mounted to the housing and adapted to close the passage between the first opening and the second opening. A locking mechanism is engageable to prevent movement of the closure member to close the passage and disengageable to allow movement of the closure member to close the passage. The twist to lock tracheostoma heat and moisture exchanger allows a user to protect from accidental closure during activities when it would be preferred like sleeping and exercising.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
With reference to
The housing 12 and the closure member 20 can each be made from a plastic material. With reference to
With reference to
As shown in
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4569344 | Palmer | Feb 1986 | A |
6193751 | Singer | Feb 2001 | B1 |
6422235 | Persson | Jul 2002 | B1 |
6772758 | Lambert | Aug 2004 | B2 |
8887718 | Shikani et al. | Nov 2014 | B2 |
8991394 | Persson | Mar 2015 | B2 |
20020156527 | Persson | Oct 2002 | A1 |
20060079827 | Jensen | Apr 2006 | A1 |
20070251523 | Landuyt | Nov 2007 | A1 |
20130192602 | Leibitzki | Aug 2013 | A1 |
20150083119 | Persson | Mar 2015 | A1 |
20150238718 | Schnell | Aug 2015 | A1 |
20180207382 | Kamradt | Jul 2018 | A1 |
20200188620 | Markwardt | Jun 2020 | A1 |
20220054781 | Worthington | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
2367588 | Mar 2017 | EP |
0189318 | Nov 2001 | WO |
2015052121 | Apr 2015 | WO |
Entry |
---|
International Search Report dated Feb. 8, 2022 (corresponding to PCT/US2021/056538). |
Number | Date | Country | |
---|---|---|---|
20220126053 A1 | Apr 2022 | US |