This invention relates to a two-axle truck for a railway car and a railway car equipped with this two-axle truck for a railway car.
As shown in
As shown in
On the other hand, in the wheelset 2r on the rear side in the direction of travel (referred to below as the rear wheelset), there is almost no lateral displacement, and there is almost no difference in the radius of rotation of the left and right wheels 3. Therefore, the necessary difference in the wheel radius between the inner and outer rails 5 (referred to as the pure rolling radius difference) cannot be obtained, and excessive sliding of the wheels 3 in the longitudinal direction (referred to as longitudinal creep) develops. The longitudinal creep force F2 in the rear wheelset 2r which develops in this manner causes an increase in the lateral force F1 in the front wheelset 2f.
Non-Patent Document 1 listed below describes that there is a large possibility that firstly longitudinal creep in the rear wheelset and secondly lateral creep in the front wheelset are the primary causes of rail corrugation which develops in the inside rail of a sharp curved track. Thus, it is thought that the occurrence of this rail corrugation can be suppressed if lateral creep (lateral pressure) of the front wheelset and longitudinal creep of the rear wheelset can be decreased.
Patent Document 1 listed below discloses, with the intension of decreasing the lateral pressure, an invention which varies the rigidity of the front and rear axle box suspensions which rotatably support the front wheelset and the rear wheelset, respectively, and an invention in which the wheels of the rear wheelset are independent of each other.
In order to carry out the invention disclosed in Patent Document 1, it is necessary to reconstruct the axle box suspensions and the wheelsets of an existing truck, and doing so is enormously expensive.
As a result of diligent investigation, the present inventors found that by making the tread gradient provided on the wheels of one wheelset different from the tread gradient provided on the wheels of the other wheelset, the above-described problems can be solved, and they completed the present invention.
The present invention is a two-axle truck for a railway car characterized by having a first wheelset having wheels with a first tread gradient and a second wheelset having wheels with a second tread gradient which is different from the first tread gradient. A two-axle truck for a railway car according to the present is invention can decrease lateral pressure which develops in the front wheelset when traveling along a curved track without changing the structure of the axle box suspensions or of the wheelsets of an existing truck.
When using a two-axle truck for a railway car according to the present invention, of the first wheelset and the second wheelset, the wheelset having wheels with a larger tread gradient is disposed to the rear in the direction of travel. In a two-axle truck for a railway car according to the present invention, the wheels of the front wheelset have a usual tread gradient γ which is in the range of 0.03-0.06, so stable running properties are guaranteed on a straight track, while the tread gradient of the wheels in the rear wheelset is made larger than the tread gradient of the wheels in the front wheelset, whereby excessive longitudinal sliding is decreased, and lateral pressure which develops in the front wheelset when traveling along a curved track can be decreased.
From another standpoint, the present invention is a railway car having a front and rear two-axle truck, and the front truck which is positioned on the front side in the direction of travel which experiences a larger lateral pressure than the rear truck which is positioned to the rear in the direction of travel or both the front truck and the rear truck use the above-described two-axle truck for a railway car according to the present invention having a wheelset having wheels with a tread gradient which is larger on the rear side in the direction of travel. According to the present invention, the wheels in the forward-most wheelset have the above-described usual tread gradient, so stable running properties are guaranteed on a straight track, while the tread gradient of the wheels of the rear wheelset of the front truck is made larger than the tread gradient of the wheels in the front wheelset of that truck, whereby lateral pressure which is generated in the front wheelset at the time of running on a curved track can be decreased.
The present invention is also a railway vehicle having a front and rear two-axle truck characterized in that the truck which is positioned on the front side in the direction of travel is the above-described two-axle truck for a railway car according to the present invention in which the wheels of the wheelset on the rear side in the direction of travel have a larger tread gradient, and in the truck which is positioned on the rear side in the direction of travel, the tread gradient of the wheels of the wheelset on the front side in the direction of travel is larger than the tread gradient of the wheels of the wheelset on the rear side in the direction of travel. As a result, even when the direction of travel of the railway car is changed, the stability of movement on a straight track is guaranteed while the lateral pressure which is generated in the front wheelset when traveling along a curved track can be decreased.
The present invention can be carried out using an existing truck without modifications by simply changing the tread gradient of the wheels. Therefore, an increase in costs can be minimized, and lateral pressure which develops in the front wheelset when running along a curved track can be decreased. As a result, lateral pressure in the front wheelset and the longitudinal creep force in the rear wheelset can both be decreased, whereby rail corrugation which develops in the rail on the inner side of a sharply curved track can be suppressed.
The progress from the conception of the present invention up to solving the problem and the best mode for carrying out the present invention will be explained while referring to
When the two-axle truck 4 for a railway car is traveling along a curved track, the longitudinal creep force F2 which develops in the rear wheelset 2r can be decreased by providing the necessary difference in the radius of the wheels on the inner and outer rails 5. For this purpose, by setting the tread gradient γ3r of the is treads 3r of the wheels 3 in the rear wheelset 2r to a large value so that the rear wheelset 2r is slightly displaced to the outer side, the radius difference becomes close to the radius difference for pure rolling, and the longitudinal creep force F2 can be decreased. If the tread gradient γ3r of the treads 3r of the wheels 3 of the rear wheelset 2 is made still larger, it is possible to obtain a difference in the wheel radius which is equal to or even larger than the radius difference for pure rolling. At this time, the effect is obtained that the longitudinal creep force F2 further decreases the lateral pressure which develops in the wheel 3 on the outer side of the front wheelset 2f.
However, if not only the tread gradient γ3r of the treads 3r of the wheels 3 of the rear wheelset 2r but also the tread gradient γ3f of the treads 3f of the wheels 3 of the front wheelset 2f is set to a large value, the stability of running along a straight track is decreased. Therefore, by setting only the tread gradient γ3r of the treads 3r of the wheels 3 of the rear wheelset 2r to a large value and making the tread gradient γ3f of the treads 3f of the wheels 3 of the front wheelset 2f be a usual tread gradient in the range of 0.03-0.06, running stability along a straight track can also be guaranteed.
With a two-axle truck 1 for a railway car according to the present invention, the running stability along a straight track is increased more than when the tread gradients γ3f and γ3r of the treads 3f and 3r of the wheels 3, 3 of the front and rear wheelsets 2f and 2r are both set to a large value. As shown in
The present invention is based on the above-described concept. Next, the effects of the present invention will be explained.
In order to ascertain the effects of the present invention, a simulation was carried out of the situation in which a suburban commuter rail car is traveling at 75 km/hour along a curved track with a radius of 300 m and a cant of 105 mm. The tread gradient γ of the front wheelset on which the simulation was carried out was set to 0.05.
In
In this simulation, in addition to the lateral force F1 which develops in the wheel on the outer side of the front wheelset and the longitudinal creep force F2 which develops in the rear wheelset, the sum F1+F2 of the lateral force F1 and the longitudinal creep force F2 which develop in the wheel on the outer side was investigated. This sum, referred to below as the overall creep force, affects the occurrence of rail corrugation. When the overall creep force (F1+F2) is small, it is difficult for rail corrugation to develop.
The results of the simulation are shown in Table 1 and
In the examples of the present invention in which the tread gradient γ of the wheels of the rear wheelset was 0.10, 0.20, or 0.33, when a truck 4 was traveling along a curved track as shown in
As shown in Table 1 and
According to the present invention, since the lateral force F1 and the longitudinal creep force F2 are both decreased, as shown in Table 1 and
The present invention can be applied not only to a usual two-axle truck but also to an articulated two-axle truck which is positioned in the connecting portion of two cars connected to each other.
Furthermore, a truck according to the present invention can employ any type of mechanism for connecting it to the body of a rail car such as a swing bolster hanging mechanism or a bolsterless mechanism.
The present invention can be used in a truck for a railway car traveling along a sharp curved track where rail corrugation develops.
Number | Date | Country | Kind |
---|---|---|---|
2007-221329 | Aug 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1858929 | Harry | May 1932 | A |
4411202 | Kreissig | Oct 1983 | A |
20050104398 | Nast | May 2005 | A1 |
Number | Date | Country |
---|---|---|
62-163175 | Oct 1987 | JP |
2738114 | Jan 1998 | JP |
10-250574 | Sep 1998 | JP |
Entry |
---|
“Properties of Trucks and Tracks When Traveling Along a Sharp Curve and Their Effect on Rail Corrugation”, J-Rail 1995 (1995 Railway Technology Joint Symposium in Japan). |
Number | Date | Country | |
---|---|---|---|
20110146530 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12712274 | Feb 2010 | US |
Child | 13034754 | US | |
Parent | PCT/JP2008/064999 | Aug 2008 | US |
Child | 12712274 | US |