The present invention relates generally to containers. In particular, the present invention relates to containers having two chambers with improved pouring features.
Flat sheets of corrugated paperboard, typically referred to as blanks, have been used for many years as the starting material to form containers. Corrugated paperboard generally refers to a multi-layer sheet material comprised of two sheets of liner bonded to a central corrugated layer of medium. Given a basic size requirement specified by the customer, industry standards, and the preference for low cost, paperboard container manufacturers strive to provide structural stacking strength with a minimal amount of corrugated paperboard.
According to some aspects of the present disclosure, a container includes a bottom, a top opposing the bottom, and a plurality of sides extending from the bottom to the top. The bottom, the top and the plurality of sides define an enclosure. The container includes a partition panel that extends from a first one of the plurality of sides to a second one of the plurality of sides thereby dividing the enclosure into a first chamber and a second chamber. The second one of the plurality of sides opposes the first one of the plurality of sides. The container further includes a pass-through opening in the partition panel configured to permit flow of contents from the second chamber into the first chamber. The container also includes a pour spout configured to permit egress of the contents from the first chamber out of the enclosure.
According to some aspects of the present disclosure, a container includes a bottom, a top opposing the bottom, a front panel and an opposing back panel extending between the bottom and the top, and a first side panel and a second side panel extending from the bottom to the top and extending from the front panel to the back panel. The container further includes a partition panel that extends from the front panel to the back panel. The container also includes a first chamber and a second chamber. The first chamber is defined by the bottom, the top, the front panel, the back panel, the first side panel, and the partition panel. The second chamber is defined by the bottom, the top, the front panel, the back panel, the second side panel, and the partition panel. The second chamber is in communication with the first chamber via a pass-through opening defined at least in part by the partition panel. The container further includes exactly one pour spout configured to permit egress of the contents from the first chamber.
The above summary is not intended to represent each embodiment or every aspect of the present invention. Additional features and benefits of the present invention are apparent from the detailed description and figures set forth below.
Other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
While the invention is susceptible to various modifications and alternative forms, a specific embodiment thereof has been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The first major top flap 34 can optionally include a first aperture 42A and the second major top flap 38 includes a second aperture 42B. The first aperture 42A and the second aperture 42B are configured to be aligned when the blank 10 is assembled to form the container 100, as will be described in greater detail below. It is contemplated that the first aperture 42A and the second aperture 42B are not limited to the particular shape, size, and configuration illustrated in
The first side panel 14 includes a pour spout portion 44 defined by a line of weakness 46 and a fold line 48. The spout portion 44 can be configured to form a pour spout 68 when the container 100 is assembled, as will be described in greater detail below.
The assembly of the blank 10 to form the container 100 (shown fully assembled in
In the exemplary embodiment shown in
Next, the first minor bottom flap 28 and the second minor bottom flap 32, followed by the first major bottom flap 26 and the second major bottom flap 30, are folded inward (i.e., towards the enclosure space 54 formed by the panels 12, 14, 16, 18) and sealed (e.g., by tape, staples, adhesives, combinations thereof, and/or the like) to form a bottom 60 of the container 100, as shown in
It is contemplated that the assembly of the container 100 described above can be achieved with or without the assistance of a case erector. Additionally, it is contemplated that some of these steps can be performed in a different order than is described above. For example, the top 64 of the container 100 can be formed before forming the bottom 60 of the container 100. It is also contemplated that any suitable method of joining or attaching panels and flaps may be utilized such as, for example, adhesives, glues, staples, tapes, a system of corresponding slits and tabs, combinations thereof, and/or the like.
To facilitate handling and transport, the container 100 can optionally include a handle 66. In the illustrated example shown in
With the container 100 assembled as shown in
In the illustrated example of
According to some aspects of the present disclosure, the assembled container 100 can be configured to be sift-proof. That is, the container 100 can be configured such that contents within the container 100 cannot unintentionally migrate out of the container 100. For example, the top flaps 34, 36, 38, 40 and the bottom flaps 26, 28, 30, 32 can be sized and shaped to substantially inhibit and/or prevent gaps in the top 64 and bottom 60, respectively, of the container 100. Additionally, for example, the overlapped coupling of the first attachment panel 20 to the back panel 16 can substantially inhibit and/or prevent the contents from migrating out of the container 100.
To allow for the contents to be egressed from the enclosure 54, the container 100 can include a pour spout 68. The pour spout 68 includes a closed position (as shown in
It is contemplated that, according to additional and/or alternative aspects of the present disclosure, other types of pour spouts 68 can be employed. As one non-limiting example, the first minor top flap 36, the first major top flap 34 and the second major top flap 38 can include a line of weakness and a fold line that are configured to form a pour-spout opening 70 that extends across a portion of the first side panel 14 and the top 64 of the container 100. Additionally, for example, the pour spout 68 can be formed entirely by a line of weakness such that the pour spout 68 cannot be reclosed after being opened.
In some contexts, it may be desirable to provide the same type of contents in both the first chamber 56 and the second chamber 58. In such circumstances (and others), it may be unnecessary to provide more than one pour spout 68. Indeed, there are substantial advantages to providing a single pour spout 68. For example, because the pour spout(s) 68 can include lines of weakness 46, the stacking strength of the container will generally decrease as the number of pour spouts increases. By providing a single pour spout 68, the number of lines of weakness and associated loss of stacking strength can be minimized. As a result, the amount of material required to achieve a particular stacking strength can be reduced, which in turn reduces the cost of manufacture.
As described above, there are a number of significant advantages associated with the partition panel 22 and/or a single pour spout 68; however, such features also present a problem in that the pour spout 68 may only directly communicate with the first chamber 56 such that the contents of the second chamber 58 may not be directly poured from the pour spout 68. According to aspects of the present disclosure, the container 100 addresses this problem by including a pass-through opening 72 configured to permit the contents within the second chamber 58 to move to the first chamber 56. In general, the pass-through opening 72 is defined by at least a portion of the partition panel 22. In the illustrated example shown in
In the example illustrated in
While the example illustrated in
In the example illustrated and described with respect to
The container 200 having a plurality of pour spouts 268A, 268B can provide improved flexibility and convenience for pouring contents from the container 200 compared to a similar container having a single pour spout. Indeed, the plurality of pour spouts 268A, 268B allow the user to pour the contents from whichever side of the container 200 is closer to the intended destination target. As a result, the user may have to reposition or move a potentially heavy container 200 less frequently. This benefit is realized because the container 200 includes a pass-through opening 272 that permits the contents to move between the first chamber 256 and the second chamber 258 such that the user can pour from either side until both chambers 256, 258 are empty. The pass-through opening 272 can also facilitate a more even distribution of the contents in the first chamber 256 and the second chamber 258. As a result, the user can pour the contents from the container 200 without worry as to the respective volumes of the contents within each individual chamber 254, 256.
The containers 100, 200 described herein are typically manufactured using corrugated paperboard, preferably with the corrugations running in a vertical direction for increased strength. As non-limiting examples, the container is manufactured from C-flute, EB-flute, E-flute or B-flute corrugated paperboard. It is to be understood that the principles of this invention could be applied to containers made of other materials, such as non-corrugated paperboards, cardboard, corrugated fiberboard, non-corrugated fiberboard, solid-fiber board, polymeric materials, and other foldable materials.
It is contemplated that the containers 100, 200 described herein can have any suitable dimensions. As one non-limiting example, the panels 12, 14, 16, 18, 20, 22, 24 can have a height(s) and a width(s) from approximately 4 inches (101.60 millimeters) to approximately 60 inches (1524.00 millimeters) and the flaps 26, 28, 30, 32, 34, 36, 38, 40 can each have a height(s) and a width(s) from approximately 0 inches (0 millimeters) to approximately 60 inches (1524.00 millimeters). As another non-limiting example, the front panel 12 can have a height of approximately 13.25 inches (336.55 millimeters) and a width of approximately 11.56 inches (293.62 millimeters), the first side panel 14 can have a height of approximately 13.06 inches (331.72 millimeters) and a width of approximately 6.81 inches (172.97 millimeters), the back panel 16 can have a height of approximately 13.44 inches (341.38 millimeters) and a width of approximately 11.75 inches (298.45 millimeters), the second side panel 18 can have a height of approximately 13.06 inches (331.72 millimeters) and a width of approximately 6.63 inches (168.40 millimeters), the first attachment panel 20 can have a height of approximately 13.06 inches (331.72 millimeters) and a width of approximately 4.94 inches (125.48 millimeters), the partition panel 22 can have a height of approximately 13.06 inches (331.72 millimeters) and a width of approximately 6.44 inches (163.58 millimeters), and the second attachment panel 24 can have a height of approximately 13.06 inches (331.72 millimeters) and a width of approximately 2 inches (50.80 millimeters), the first major top flap 34 and the first major bottom flap 26 can have a height of approximately 6.88 (174.75 millimeters) and a width of approximately 11.56 (293.62 millimeters), the first minor top flap 36 and the first minor bottom flap 28 can have a height of approximately 4 inches (101.60 millimeters) and a width of approximately 6.81 inches (172.97 millimeters), the second major top flap 38 and the second major bottom flap 30 can have a height of approximately 6.78 inches (172.21 millimeters) and a width of approximately 11.75 inches (298.45 millimeters), and the second minor top flap 40 and the second minor bottom flap 32 can have a height of approximately 6.97 inches (177.04 millimeters) and a width of approximately 6.63 inches (168.40 millimeters).
While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1898231 | Weiss | Feb 1933 | A |
2980540 | Turpin | Apr 1961 | A |
3029711 | Griese | Apr 1962 | A |
3047204 | Wolowicz | Jul 1962 | A |
3089631 | Tyrseck et al. | May 1963 | A |
3106876 | Dewhurst | Oct 1963 | A |
3130892 | Krueger et al. | Apr 1964 | A |
3235163 | Hennessey | Feb 1966 | A |
3288348 | Brackett | Nov 1966 | A |
3347446 | Guyer et al. | Oct 1967 | A |
3758021 | Gordon-Ross | Sep 1973 | A |
3965803 | Stone | Jun 1976 | A |
4361270 | Roccaforte | Nov 1982 | A |
Number | Date | Country |
---|---|---|
2667574 | Apr 1992 | FR |
Number | Date | Country | |
---|---|---|---|
20140217102 A1 | Aug 2014 | US |