The invention relates to a multi-chamber cartridge for multi-component plastic materials such as silicon, cement etc. . . with chambers arranged axially one behind the other for the reception of the two components.
Besides the well-known standard arrangements for two component cartridges with longitudinal separation of a cylindrical cartridge tube into two chambers by means of an intermediate separation wall or a co-axial inner tube (newer arrangement in the form of a co-axial cartridge), two-chamber cartridges with chambers arranged axially behind one another are also known. Examples here for can be found in U.S. Pat. Nos. 4,050,612, 4,029,236, and 4,961,520 as well as EP-0-624 403 a1
In the arrangement disclosed in EP-0 624 403 A1, the two chambers each include a piston for pressing the two components out of the cartridge. The components are disposed in a cylindrical cartridge tube axially one behind the other. The first chamber is formed between the cartridge tube and an inner tube which is arranged concentrically with the cartridge tube. This annular chamber is closed by an annular piston disposed in the back. The second chamber disposed axially behind the first chamber is formed by a piston which, forwardly, becomes wider in a beaker-like manner, and has a wall which abuts the inner wall of the cartridge tube. The beaker-like piston abuts with its front edge the annular piston of the first chamber so that, upon application of a pressure to the piston closing the rear chamber, the pressure is transmitted to the annular piston closing the front chamber and both pistons are advanced in unison. The rear chamber further includes a central lug which projects from the piston of the rear chamber forwardly and which enters the inner tube of the front chamber when the rear piston is moved forwardly. At its front end, the rear chamber is delimited by a radial wall which is disposed adjacent the end of the inner tube of the front chamber and which abuts with its outer end the inner beaker wall of the rear chamber.
The design of the known two-chamber cartridges requires the filling of the cartridge chambers after assembly of the cartridge from the discharge end which is relatively complicated and requires special equipment. In addition, the venting during filling is problematic.
It is the object of the present invention to provide a two-chamber cartridge with chambers arranged axially one after the other wherein each of the chambers can be filled easily with a standard filling apparatus.
In a two chamber cartridge with chambers arranged axially one after the other, wherein the front chamber in a front part of the cartridge interior is divided by a double wall insert into an outer partial chamber and an inner partial chamber which are both closed at the rear ends by pistons and the rear chamber is formed by a beaker which is inserted into the rear of the cartridge and has a beaker bottom with a pin extending from the beaker bottom through an annular piston closing the beaker, the rear end of the double wall insert abuts the annular piston closing the beaker and the annular piston includes passages leading to gap between the two spaced walls of the double wall insert and the two front partial chambers and the intermediate space are in communication with a mouthpiece space at the front end of the cartridge.
Details of the arrangement according to the invention will become more readily apparent from the following description of a particular embodiment thereof on the basis of the accompanying drawings.
As shown in the figures, the two-chamber cartridge according to the invention comprises a cartridge tube 1 which is open at its rear end but which has a front end wall 2 with an outer mouth piece 3 formed thereon, a double-wall insert 4 concentrically disposed in the front part of the cartridge tube 1 and including a front end wall 5 with an inner mouth piece 6, which extends concentrically with the outer mouthpiece 3. A piston structure with an annular piston 7 and a central piston 8 for closing off of the front end component chamber K1 is provided in the front part of the cartridge tube and a beaker 9 with a beaker bottom wall 10 forming a rear chamber K2 is disposed in the rear part of the cartridge tube 1 with a central hollow pin 11 extending from the bottom wall 10 and an annular piston 12 closing the open front end of the beaker 9.
In the figures, the different fillings of the front chamber K1 and of the rear chamber K2 are shown in each case by hatching.
First, some details concerning the cartridge arrangement as shown in
As already mentioned a double wall insert is disposed in the front part of the cartridge tube 1. Within the front part of the cartridge tube 1, the double-wall insert forms a double wall tube and divides the front part of the interior space of the cartridge tube 1 into an annular outer partial chamber K1a and an inner partial chamber K1b. The two partial chambers are filled with the same first material component but are not in communication. This arrangement permits the optional use of the cartridge according to the invention as a three-chamber cartridge for three-material components.
The double wall insert 4 forms with its two concentric tube walls 41 and 42, an annular gap 43, which, as will be described below, forms a flow channel for the rear chamber K2, that is, for the material component contained in the beaker 9 to the mouthpiece arrangement 3, 6. The insert 4 is suitably connected to the front end wall 2 of the cartridge tube 1, which may be accomplished by a locking structure in a known way which is not shown in the drawing, by ultrasound welding, by cementing or another connecting structure. Of course, the insert may be centered by suitable arrangements which are known to the person skilled in the art but not shown in the schematic drawings.
As apparent from the drawing, the front end wall 5 of the insert 4 is such that the inner partial chamber K1b is closed by the front wall onto which the mouthpiece 6 is formed, so that the inner partial chamber K1b can be emptied via the mouthpiece 6. As further apparent, the front end wall 5 of the insert 4 forms with correspondingly arranged ribs, grooves etc. openings 51, 52 which provide for communication between the outer partial chamber K1a and the annular space between the outer mouthpiece 3 and the inner mouthpiece 6 and also between the gap 43 between the tube walls 41, 42 of the insert 4 and the annular space between the outer and the inner mouthpieces 3 and 6.
The annular piston 12 which closes the beaker 9 and, consequently, the rear chamber K2 includes an annular axial groove 13, which, as can be seen from the various figures, is complementary to the rear end area of the insert 4 which projects beyond the pistons 7, 8. As a result, the rear end area enters the annular groove 13 when the beaker 9 is inserted into the cartridge tube 1. Furthermore, the annular piston 12 includes a plurality of bores 14 arranged in annularly spaced relationship and extending through the bottom wall of the groove 43. Through these bores 14, the second material component can flow from the rear chamber K2 into the space between the tubular walls 41, 42 of the insert 4 when the beaker is inserted into the cartridge tube 1 as shown in
The
Now when pressure is applied to the rear beaker bottom 10 by a common cartridge press, the beaker 9 is advanced within the cartridge 1. As a result, the annular piston 12 is properly seated by the insert 4 and fixed axially while the annular piston 7 and the inner piston 8 are moved forward by the tubular wall of the beaker 9 or, respectively, by the center pin 11. The two chambers K1 (consisting of the partial chambers K1a and K1b) and K2 become axially smaller at the same rate so that the material is pressed out of the chambers K1 and K2. From the front partial chamber K1a, the material flows through the openings 51 into the annular space between the outer mouthpiece 3 and the inner mouthpiece 6. The material from the inner partial chamber K1b flows into the inner mouthpiece 6 and the material from the rear chamber k2 flows through the annular gap 43 between the insert tubes 41, 42 and through the outlet openings 52 also into the annular space between the outer mouthpiece 3 and the inner mouthpiece 6. From the mouthpiece arrangement, the material flows from the annular space between the outer and the inner mouthpieces 3, 6 and the material from the inner mouthpiece 6 flows into a mixing chamber disposed on the mouthpiece arrangement in which the material components of the two chambers K1 and K2 (or if the cartridge is a three-chamber cartridge, from all three cartridges) are intensely mixed.
As readily apparent to a person skilled in the art, the mixing ratios can be selected by an appropriate selection of the relative cross-sections of the component chambers K1 and K2 in a wide range. For example, the cross-section of the rear chamber K2 in the beaker 9 can be changed by providing a hollow pin 11 of increased or reduced diameter or by reducing the outer diameter of the beaker 9 and providing radial ribs on the outer wall of the beaker for supporting it on the inner wall of the cartridge tube 1.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 000 757 | Jan 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2826339 | Maillard | Mar 1958 | A |
4029236 | Carson, Jr. et al. | Jun 1977 | A |
4050612 | Stone | Sep 1977 | A |
4220261 | White | Sep 1980 | A |
4961520 | White | Oct 1990 | A |
5139171 | Mader | Aug 1992 | A |
7237693 | Brennan et al. | Jul 2007 | B2 |
Number | Date | Country |
---|---|---|
0 624 403 | Nov 1994 | EP |
Number | Date | Country | |
---|---|---|---|
20060180598 A1 | Aug 2006 | US |