1. Field of the Invention
The invention is related to two channel fiber optic rotary joint in the field of optical transmission through a mechanical rotational interface.
2. Description of Related Art
The Fiber optic Rotary Joint (FORJ) is the opto-mechanical device which allows uninterrupted transmission of an optical signal in a fiber guide through a rotational interface to a stationary apparatus. FORJ can be categorized as active and passive. An active FORJ consists of a light source on either rotor side or stator side and a photo detector on another side. The disadvantage of active FORJ is requirement for electrical power. The passive FORJ is intended to transfer optical signals from fiber to fiber without any electronic, or electrical units. The use of FORJ can be widely found in missile guidance systems, robotic systems, remotely operated vehicles (ROVs), oil drilling systems, sensing systems, and many other field applications where a twist-free fiber cable is essential. Combined with electrical slip rings or fluid rotary joints, FORJs add a new dimension to traditional rotary joints. As fiber optic technology advances, more and more traditional slip ring users will benefit from FORJs in their new fiber systems. This issue can be solved relatively easy if only a single channel is to be transmitted because it can be transmitted by keeping alignment between the optical axis and mechanical rotational axis. However, the transmission results in difficulties when it is desired to transmit two channels separately from each other through a single rotation interface.
A couple of prior inventions of two channel fiber optical rotary joint are described in the following patents: U.S. Pat. No. 5,588,077, U.S. Pat. No. 4,842,355, and U.S. Pat. No. 4,725,116.
In U.S. Pat. No. 5,588,077, the two optical fiber channels are arranged in-line along the same rotational axis. Isolation of one channel from the other is achieved through a novel application of gradient index rod lenses of suitable pitch. A pair of lenses is arranged adjacent each other on each side of the rotational interface and a second pair of axially aligned lenses is arranged outboard of the first pair. An optical signal from one of the outboard lenses can be directed to one of the other lenses depending on the pitch selection. The drawback of this design is that the losses due to crosstalk and overlap of the signal paths would be pretty significant.
Gold, et al designed another two channel FORJ in U.S. Pat. No. 4,842,355. A first channel signal is delivered to an optical fiber transmitted coaxially of the stationary and rotary side, transfer across the rotational plane between the two components being accomplished by opposing centrally located optical lenses. A second channel transmitted through a second optical fiber is delivered to a lens system which converts the light into a cylinder of light coaxial with the first channel and which surrounds the optical management for the first channel. Second channel thus are converted into coaxial hollow cylinders of light. These cylinders of light are transmitted between facing lens systems in the rotary and stationary sides of the apparatus. But the facing lens systems are very difficult to be fabricated.
Spencer, et al shows in U.S. Pat. No. 4,725,116 a two-channel and multi-channel FORJ. Within the joint reflecting reflecting surface are used to redirect off-axis optical signals onto the joint axis, with relative rotation occurring while the signals are on-axis. A rotating member for each channel has a reflecting surface for reflecting the on-axis signal portion off-axis to a receptor fiber. Alignment between the rotating member and the receptor fiber, as well as drive for the rotating member, is provided by a pair of magnets of opposite polarity, one being secured to the rotating member and the other being secured to the rotor. But it could be very difficult for the magnetic interaction to accurately ensure the synchronous rotation of the rotor and the rotating member. The size of the magnetic element and the adjustment of the reflecting surface also increase the size of the invented embodiment.
The first object of the present invention is to utilize the conventional collimators, micro-collimators, and reflecting surfaces to realize a two-pass fiber optical rotary joints which can simultaneously transmit optical signals through a single mechanical rotational interface with a very low-profile and compact structure for both single mode fiber and multi mode fiber.
Another object of the present invention to minimize the need for maintaining precise axial alignment between the rotating and non-rotating elements of a two channel fiber optic rotary joint so that it could be used in any harsh environments such as temperature change, vibration and shock.
A further objective of the preset invention is to reduce the insertion loss and increase return loss and to allow the rotary joint to work at any ambient pressure by filling index-matching fluid.
An even further objective is to incorporate a pre-loaded precision ceramic ball bearing to achieve reduced optical losses by improving concentricity and long-lasting precision between the rotational and stationary elements of optic rotary joint.
The mechanical details of a full embodiment of the present invention is shown in
An index matching fluid could be used to fill in the space of stator. The shaft seal 36 and o-ring 41 are utilized to seal the assembly. One function of the index matching fluid is for the lubrication between ceramic ball bearings and the “micro bearing”. Another function of index matching fluid is for pressure compensating purposes. The whole space inside the stator 32 could be used as the pressure compensation chamber. The shaft 40 on rotor 31 is designed long enough to allow the shaft seal 36 to slide axially like a pressure compensation piston when the ambient pressure is not balanced with the pressure inside the stator 32.
Although the present invention has been described in several particular embodiments of an FORJ, it is expected that additional embodiments and modification will be apparent without departing from the spirit of the invention.