The invention relates to the manufacture of thermal break sections for the use in the manufacture of window, door, skylight frame assemblies and other fenestration related assemblies.
Elongate metal sections for use in the manufacture of window and door frame assemblies are commonly extruded from aluminum. As is well known, it is often desirable for the interior and exterior parts of the section to be thermally isolated from one another. This thermal isolation prevents the low temperature of the exterior parts being transmitted to the interior parts and resulting in undesirable condensation on the internal surfaces. To this end it is common practice to provide a thermal break by connecting the interior and exterior parts of the section only by means of a nonmetallic connector of low thermal conductivity.
Following are two examples of methods used for providing such a thermal break. In a first method the section is formed from two separately preformed metal extrusions. These are connected together by preformed rigid non-metallic strips which are designed to interlock with the two metal extrusions respectively. Two non-metallic strips are often provided in spaced relation so as to form, with the metal extrusions, a hollow box section. There is then injected into this hollow box section a settable liquid plastics material, the setting of which forces the non-metallic strips and metal extrusions into rigid fixed relation.
A second common method of manufacturing a section with a thermal break is by the method known as “pour and cut”. According to this method the section is initially extruded and shaped to define an upwardly facing open channel. The channel is then filled with a settable liquid of low thermal conductivity, usually a plastics resin, which is then allowed to set. The part of the section forming the bottom of the channel is then cut through or debridged longitudinally, usually by a product from Azon USA, Inc. sold under the trademark “Bridgemill HMI”. If necessary, any other parts of the section connecting the interior and exterior parts thereof are also debridged so that the interior and exterior parts remain connected solely by the solidified resin, which thus provides the thermal break.
According to the invention, an architectural thermal barrier component and method of forming same includes an elongate section incorporating a thermal break, for example for use in the manufacture of window or door frame assemblies. The method comprises forming multiple co-extensive elongate elements, one of which includes a channel portion, aligning the elongate elements with one another, crimping the elements in engagement with one another, filling the channel with a settable liquid of low thermal conductivity, effecting solidification of the settable liquid to form a solidified thermal barrier element, and cutting longitudinally through or debridging any part of the elongate elements that bridges the thermal barrier element.
The following is a more detailed description of an embodiment of the invention, by way of example, reference being made to the accompanying drawings in which:
Certain terminology will be used in the following description for convenience and reference only, and will not be limiting. For example, the words “upwardly”, “downwardly”, “rightwardly” and “leftwardly” will refer to directions in the drawings to which reference is made. The words “inwardly” and “outwardly” will refer to directions toward and away from, respectively, the geometric center of the arrangement and designated parts thereof. Said terminology will include the words specifically mentioned, derivatives thereof, and words of similar import.
Referring to
As shown in
The interior element 20 includes a planar portion 90 which has a flat outer surface 95 providing a visible interior surface of the window frame assembly 10. A box construction 100 projects from an inner surface 105 of the planar portion 90 and includes an upper side 110 and a lower side 115. The upper and lower sides 110, 115 are joined at an inner end 120 of the box construction 100 by an inner side 125. The upper side 110 further includes an internal screw channel 130 to aid in assembling the window frame assembly 10, as is known in the art.
The interior element 20 further includes a channel portion 135 extending from the inner side 125 of the box construction 100. The channel portion 135 includes a channel floor section 140 extending inwardly, generally perpendicular to the inner side 125, proximate the lower side 115 of the box construction 100. A left channel side 145 extends upwardly from a left end 150 of the channel floor section 140. A flange 155 extends from an upper end 160 of the inner side 125, and a corresponding flange 165 extends from an upper end 170 of the left channel side 145. Each of the flanges 155, 165 includes a depending end portion 175, 180 respectively. Projections 185, 190 arise from the channel floor section 140, aligned with the depending end portions 175, 180. Guide notches 192, 193 are provided on a lower surface 194 of the channel floor section 140 inwardly of the projections 185, 190.
Upper and lower projections in the form of hooks 195, 200 extend from the left channel side 145. The upper hook 195 extends leftwardly from the upper end 170 of the left channel side 145, and includes an inwardly directed barb 205. The lower hook 200 extends leftwardly from a lower end 210 of the left channel side 145 and includes an inwardly directed barb 215.
As shown in
One method of passing the flange 60 between the hooks 195, 200 is to move the elements 15, 20 laterally into engagement. As the elements 15, 20 move together, the hooks 195, 200 will contact the flange 60. As the flange 60 passes between the barbs 205, 215, the hooks 195, 200 will flex slightly until the barbs 205, 215 clear the flange 60. As the barbs 205, 215 clear the flange 60, there will be an audible and tactile “click” indicating to an assembler that the elements 15, 20 are in the initial assembled position.
Another method of passing the flange 60 between the hooks 195, 200 is to arrange the interior and exterior elements 15, 20 substantially end to end, aligning the hooks 195, 200 with the recesses 75, 80. The elements 15, 20 are then moved longitudinally to a side by side configuration as the hooks 195, 200 slide longitudinally into the recesses 75, 80.
Once assembled by either method, the upper hook 195 is aligned with the upper recess 75 and the lower hook 200 is aligned with the lower recess 80. The upper and lower hooks 195, 200 are splayed slightly outwardly from the recesses 75, 80 so that they are not firmly engaged within the recesses 75, 80. However, a sufficient portion of the upper and lower hooks 195, 200 are received into the recesses 75, 80 to effect a holding together of the exterior element 15 and the interior element 20 to enable the assembler to easily handle the loosely connected together parts during a furtherance of the processing and without the elements 15, 20 becoming easily disconnected. Since a two color scheme is to be employed, which color was applied to the exterior elements 15 and the interior elements 20 prior to the implementation of the loose connection therebetween, the thickness of the color coating on the exterior and interior elements 15, 20 will not impact or negate the loose connection described above.
Referring to
Referring to
After the thermal barrier material 220 has cured, a circular saw or other cutting implement (not shown) integral in the “pour and cut” machine is traversed longitudinally of the assembly 10 so as to cut through or debridge the channel floor section 140 between the notches 192, 193 and between the projections 185, 190. The mechanical connection between the thermal barrier material 220 and the elements 15, 20 is thereby undisturbed as the projections 185, 190 remain intact and embedded in the thermal barrier material 220. The assembly 10 thereby remains mechanically connected, but the “debridging” of the channel floor section 140 creates a thermal break between the exterior and interior elements 15, 20. The only thermal connection between the elements 15, 20 is now through the thermal barrier material 220, which has low thermal conductivity.
In a further embodiment of the invention, shown in
The interior element 240 includes a planar portion 315 which has a flat outer surface 320 providing a visible interior surface of the window frame assembly 230. The remainder of the interior element 240 is formed similar to the exterior element 235. A box construction 325 projects from an inner surface 330 of the planar portion 315 and includes an upper side 335 and a lower side 340. The upper and lower sides 335, 340 are joined at an inner end 345 of the box construction 325 by a transverse flange 350. The upper and lower sides 335, 340 taper inwardly toward each other at their inner ends 355, 360 so that respective upper and lower recesses 365, 370 are formed between the upper and lower sides 335, 340 and the transverse flange 350. The upper side 335 further includes an internal screw channel 375 to aid in assembling the window frame assembly 230, as is known in the art.
The connecting element 245 includes a channel portion 380. The channel portion 380 is formed by a channel floor section 385 and a pair of opposing, upright left and right channel walls 390, 395. A flange 400, 405 extends inwardly from an upper end 410, 415 of each of the channel walls 390, 395. Each of the flanges 400, 405 includes a depending end portion 430, 435 respectively. Projections 440, 445 arise from the channel floor section 385, aligned with the depending end portions 430, 435. Guide notches 450, 455 are provided on a lower surface 460 of the channel floor section 385 inwardly of the projections 440, 445.
Upper and lower hooks 465, 470 extend outwardly from the left channel wall 390. The upper hook 465 extends outwardly from the upper end 410 of the left channel wall 390, and includes an inwardly directed barb 475. The lower hook 470 extends outwardly from a lower end 480 of the left channel wall 390 and includes an inwardly directed barb 485. In like manner, upper and lower hooks 490, 495 extend outwardly from the right channel wall 395. The upper hook 490 extends outwardly from the upper end 415 of the right channel wall 395, and includes an inwardly directed barb 500. The lower hook 495 extends outwardly from a lower end 505 of the right channel wall 395 and includes an inwardly directed barb 510.
In much the same fashion as the first embodiment, the window frame assembly 230 is assembled by drawing together the exterior and interior elements 235, 240. In the instant embodiment, however, the connecting element 245 is placed between the exterior and interior elements 235, 240 such that the flanges 285, 350 are close against the left and right channel walls 390, 395 respectively. The audible and tactile “click” will indicate to the assembler that each of the exterior and interior elements 235, 240 has engaged the connecting element 245. The elements 235, 240, 245 can also be initially assembled by longitudinal sliding, as in the first embodiment. In this arrangement, the upper hook 465 is aligned with the upper recess 300 of the exterior element 235 and the lower hook 470 is aligned with the lower recess 305 of the exterior element 235. Likewise, the upper hook 490 is aligned with the upper recess 365 of the interior element 240 and the lower hook 495 is aligned with the lower recess 370 of the interior element 240.
The upper and lower hooks 465, 470, 490, 495 are, however, splayed slightly outwardly from the recesses 300, 305, 365, 370 so that they are not firmly engaged. As in the above embodiment, the hooks 465, 470, 490, 495 are locked or crimped into the recesses 300, 305, 365, 370 to lock the exterior and interior elements 235, 240 onto the connecting element 245, as shown in
The next step of forming the window or door frame assembly 230 with thermal break section is the application of a thermal barrier material 515 such as poured polyurethane or other plastic or composite material having a low thermal conductivity. The combined section is fed into a conventional “pour and cut” machine (not shown). The construction and operation of such machines is well known and will not therefore be described in detail. The thermal barrier material 515 is applied to fill the channel portion 380. As the thermal barrier material 515 cures and solidifies, it is physically engaged by the depending end portions 430, 435 of the flanges 400, 405 and the projections 440, 445 of the channel floor section 385.
After the thermal barrier material 515 has cured, a circular saw or other cutting implement (not shown) integral in the “pour and cut” machine is traversed longitudinally of the assembly 230 so as to cut through or debridge the channel floor section 385 between the notches 450, 455 and between the projections 440, 445. The mechanical connection between the thermal barrier material 515 and the separated left and right walls 390, 395 of the channel portion 380 is thereby undisturbed as the projections 440, 445 remain intact and embedded in the thermal barrier material 515, as shown in
The arrangements described above have the advantage that the elements 15, 20, 235, 240 can be extruded consistently with the required tolerances using conventional extrusion technology. The “pour and cut” apparatus can have a conventional configuration and can be used in the conventional manner when the combined section has been assembled.
The pre-coloring of the elements may be carried out by any of the commonly used methods. The detailed dimensions of the inter-engaging parts of the elements may be so selected as to allow for the thickness of the colored coating and the lesser hardness of the coating may be employed to compensate for tolerances in the dimensions of the inter-engaging parts.
While the invention has been described in the specification and illustrated in the drawings with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined in the claims. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out this invention, but that the invention will include any embodiments falling within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/013860 | 4/10/2006 | WO | 00 | 10/5/2007 |
Number | Date | Country | |
---|---|---|---|
60672752 | Apr 2005 | US |