The invention relates to a two-component aerosol can for dispensing sealing and assembly foams based on isocyanates, having an outer pressure container which holds a prepolymer component and a propellant gas, the outer pressure container being in communication with a first valve device and with a first channel; an inner container which holds a curing component and a propellant gas, the inner container being in communication with a second valve device and with a second channel; and a spray head which comprises a device for simultaneously actuating the first and second valve devices; and a spray tube into which the first and second channels jointly open.
Two-component pressurized cans for dispensing sealing and assembly foams are known in a multiplicity of embodiments. The sealing and assembly foams here are formed from a polyisocyanate-based prepolymer component and from a curing component, leading to the crosslinking of the polyisocyanate groups of the prepolymer component. Usually the prepolymer component consists of a polyisocyanate based on MDI (diphenylmethane diisocyanate), TDI (toluene diisocyanate) or HDI (hexamethylene diisocyanate), which has been reacted with a polyol, as for instance a polyether polyol or a polyester polyol, with reactive isocyanate groups remaining in the prepolymer. An example of a curing agent used is a polyol, for instance a glycol, more particularly ethylene glycol. The prepolymer component here is held in the actual pressurized can, and the curing component in a separate inner container, which is either opened before use in the pressurized can or else is outwardly discharged via a separate valve mechanism. In the latter case, the mixing of prepolymer and curing agent takes place outside the pressurized can, usually in an application tube.
The pressurized can holds not only the prepolymer but also propellant gas, which serves first to dispense the prepolymer from the pressurized can and secondly for foaming. In addition there are customary adjuvants, such as flame retardants, foam stabilizers, and catalysts.
Located in the inner container is the curing agent, usually together with a catalyst. If the inner container is opened into the pressurized can, there may be no need for a propellant. If the inner container is discharged via a separate valve, the inner container also holds propellant gas.
Two-component aerosol cans which have an inner container whose contents are released in the interior of the pressurized can, where they mix with the prepolymer, have the disadvantage that the reaction that then ensues requires that the mixture be dispensed within a short time. The mixture reacts, with heating, to form a completed polymer, which can no longer be dispensed. The period within which the mixture can still be dispensed amounts to 20 minutes at maximum.
The time limit can be avoided if the pressurized can and the inner container possess separate valves, which can be triggered jointly. In that case the two components are only mixed outside the pressurized can. The mixture hardens outside the pressurized can, at the deployment site. The pressurized can itself remains ready for use; even after partial discharge, the contents of the pressurized can and those of the inner container as well retain an unaltered reactivity.
Pressurized cans of this kind with two valves, as described in EP 0 111 089 B1, for example, are known per se and are established. Such an aerosol can that allows external mixing is illustrated in
A disadvantage, however, is that the foams they generate frequently do not have the ideal composition, because the valves are unable to ensure the exact mixing ratio of prepolymer and curing agent. This does not matter if the dispensing rate for the curing component is set such that the curing agent is present in excess and completely satisfies the free isocyanate groups of the prepolymer. Where, however, the desire is for an isocyanate excess in the mixture dispensed, it is necessary to limit the dispensing rate for the curing component.
On the other hand it is rational to use identical valves for prepolymer component and curing component, in order to ensure uniform triggering.
Another problem is the tendency of the foams thus generated to contract after having been dispensed at the deployment site. The contraction, while amounting to only a few percent by volume, may nevertheless represent a great disadvantage at locations where an impervious seal is important.
It would be desirable, therefore, to have a two-component aerosol can and an assembly foam which on the one hand precisely control the dispensing rate for the two components and on the other hand prevent the contraction of the finished foam.
This object is achieved with an aerosol can, of the type specified at the outset, for which the second valve device or the second channel comprises a throttle element which tailors the dispensing rate for the curing component to that for the prepolymer component, the curing component not being sufficient to satisfy the isocyanate groups of the prepolymer component, in such a way that in the mixture of the prepolymer component and curing component dispensed there is an isocyanate excess of more than 3 wt %, based on the weight of the mixture.
A pressurized can 100 according to disclosed embodiments is illustrated in
By isocyanate excess is meant the weight fraction of the isocyanate group as a proportion of the weight of the mixture dispensed.
The prepolymers employed in the aerosol can of the invention are those with a customary basis, as are prepared, for example, from MDI (diphenylmethane diisocyanate) and polyether polyol. Important in this case is the excess of free NCO groups, which is for example in the range from 15 to 20 wt %, based on the prepolymer. The prepolymer is held in the outer pressure container of the aerosol can and is admixed with propellant gas, as for example with 1,1-difluoroethane (R152a), 1,1,2,2-tetrafluoroethane (R134a), propane, butane or dimethyl ether. It is also possible to use propellant gas mixtures, for instance propane/butane/dimethyl ether, optionally with addition of R152a and/or R134a. The outer pressure container, furthermore, may hold customary adjuvants, examples being foam stabilizers, flame retardants, catalysts, and the like.
The curing component is located in the inner container and comprises a polyol, as for instance glycol or diethylene glycol. Additionally present is a customary catalyst which brings about crosslinking with the prepolymer, and also propellant gas. It may be useful to add a dye to the curing component, which in the dispensed product indicates the activation of the inner container.
The inner container preferably holds the same propellant gas as the outer pressure container and, accordingly, has the same pressure. Where the inner container consists of a polyolefin, as is preferred, there is also automatically an exchange of propellant gas and a pressure compensation through the wall.
The outer pressure container is in communication via a first valve with the first channel in the spray head of the aerosol can, and the first channel opens into a spray tube.
The inner container is in communication via a separate second valve with the second channel in the spray head of the aerosol can. The two valves here are located in a valve plate which is gastightiy arranged in the dome of the can. The inner container here is gastightly mounted on the underside of the valve plate, below the second valve. Reference is made, by way of example, to EP 0 111 089. The arrangement of both valves in the valve plate permits simultaneous triggering.
The spray head at the same time contains a device for simultaneous actuation of the two valves. For this purpose the spray head is mounted in a vertically movable way on the valve plate and is able to press the valves in for triggering, with the aid of the channels which are arranged in the valve head and which engage around the upper edge of the stent of each valve. The two channels open into a spray tube, in which the two components are combined. The valves, in a known way, have a vertically movable stem which when pressed opens up the valve passage.
For reasons of cost and in order to enable uniform opening, the first and second valves are identical in design. However, since the dispensing rate for the curing component must be lower than that of the prepolymer component—the quantitative ratio of prepolymer component to curing component is in the range from 15:1 up to 5:1 and more particularly is about 10:1—there is a throttle element 110 (shown in
A residual content of isocyanate in the dispensed mixture is essential to the invention. This residual content ought to be more than 3 wt %, based on the mixture including propellant gas, and more particularly 5 to 13 wt %. An isocyanate excess of 10 to 12 wt % is preferred.
The effect of the excess of free isocyanate in the mixture dispensed, under the influence of moisture, more particularly of atmospheric moisture, is a post-expansion of the foam, causing it to conform particularly well to the walls in joints and openings. In the case of reactive surfaces, there is reactive attachment of the sealing foam. In the case of smooth surfaces not offering any good hold, the use of a primer may be useful. For this reason, the sealing and assembly foam generated in the invention can be employed particularly well for the sealings of joints and openings. Watertight closures are developed, with a pressure resistance of more than 1.5 bar.
The foam may be deployed, for example, for the water-resistant sealing of pipes (especially disused pipes in buildings), of leadthroughs, shaft rings, well caps, and also door and window connection joints. One preferred application is the closure of empty pipes which are installed and laid (in newbuilds, for example) for the purpose of converting cable looms and the like.
In the testing method, pipe closures with sealing foams dispensed in accordance with the invention were tested at 1.5 bar. The closures proved to be airtight and watertight for much more than 120 hours.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 127 914.8 | Nov 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/082637 | 11/27/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/102024 | 5/31/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3096001 | Boe | Jul 1963 | A |
3416709 | Shultz | Dec 1968 | A |
3439840 | Frank, Jr. | Apr 1969 | A |
3454198 | John | Jul 1969 | A |
3465918 | Milo | Sep 1969 | A |
3575319 | Safianoff | Apr 1971 | A |
4019657 | Spitzer | Apr 1977 | A |
4429814 | Scotti | Feb 1984 | A |
4769395 | Pauls | Sep 1988 | A |
6079871 | Jonas | Jun 2000 | A |
7717357 | Gantenbein | May 2010 | B2 |
7798366 | Hoshino | Sep 2010 | B2 |
8839994 | Mason | Sep 2014 | B2 |
20020088724 | Morck | Jul 2002 | A1 |
20020153633 | Ladang | Oct 2002 | A1 |
20140371349 | James-Burris | Dec 2014 | A1 |
20180104705 | Slutskii | Apr 2018 | A1 |
20180272367 | Rayner | Sep 2018 | A1 |
20190256277 | Lechner | Aug 2019 | A1 |
20210002063 | Bürkle | Jan 2021 | A1 |
20220017678 | Ohara | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
202009013510 | Jan 2010 | DE |
0111089 | Jun 1984 | EP |
02079291 | Oct 2002 | WO |
Entry |
---|
Feb. 21, 2019 International Search Report issued in International Patent Application No. PCT/EP2018/082637. |
Jun. 2, 2020 International Preliminary Report on Patentability issued in International Patent Application No. PCT/EP2018/082637. |
Number | Date | Country | |
---|---|---|---|
20200399051 A1 | Dec 2020 | US |