The invention relates to devices with which a controlled drip of liquids is to be guaranteed, as in the case of a pan roller in a printing machine.
Drip edges are known in the state of the art and are always used in practice whenever a liquid, which wets a surface that is disposed essentially perpendicular to the gravitational force is to be made to drip passively, i.e., driven by the gravitational force, at a certain location in the device in a controlled manner. This should prevent the surface, which is disposed behind the drip edge, from coming in contact with the liquid. Furthermore, the dripping liquid can be collected beneath the drip edge in a targeted manner.
Drip edges are usually mounted on surfaces, which are disposed mostly at a right angle to the direction of the gravitational force, for example, and which are wetted at least temporarily with a liquid which is to be made to drip from this surface in a controlled manner. Drip edges are usually V-shaped, i.e., form an acute-angle edge, having two flanks attached, wherein the tip and/or edge is aligned in the direction of the gravitational force. The liquid travels along the flank toward the edge of the drip edge. Since the liquid would have to move opposite the gravitational force after reaching the edge on the opposite flank, a drip forms on the edge and then falls off the drip edge.
Drip edges are used primarily for protection against water with stationary surfaces, for example, in construction engineering. Drip edges are not known for use with rotating systems, e.g., on printing machines with pan rollers, where other approaches are generally used. The reason for this is that a liquid film is usually created with rotating systems, because the liquid is entrained in the direction of rotation due to the surface tension and is thus drawn out. Therefore, no drip is formed initially. Only when a large enough bulge of liquid has been built up does it begin to drip, which is why traditional single-component drip edges are often inadequate. The problem can often occur that wetting of the surface also takes place beyond the tip of the drip edge, and the liquid thus also comes in contact with surfaces that should be protected from the liquid. In the case of printing machines, the excess ink can then spread from the pan roller or the transfer roller into the bearings in the printing machine, necessitating frequent maintenance.
For this reason, wipers and/or scrapers, which act directly on the end faces of the rollers and return the excess paint to the immersion pan, are generally used instead of drip edges on pan rollers. These scrapers have the disadvantage that they necessitate very complex constructions because contact between the scraper and the roller must be ensured and the scrapers are also very high maintenance. Furthermore, abrasion dust or particles may enter the ink pan due to wear on the scrapers, most of which are made of soft plastic. Pan rollers with scrapers are described in DE 19860334 or DE 1249885, for example.
The object of the invention is to provide an improved drip edge, which can also be used in rotating systems, for example.
According to the teaching of the present invention, this object is achieved by a device according to claims 1 to 9, a roller according to claims 10 to 14 and use of a device having a two-component drip edge according to claim 15 as well as by a printing machine according to claim 16.
In agreement with the present teaching, a device having a surface, which can be wetted by a liquid and which has a two-component drip edge is disclosed in accordance with the present teaching. The two-component drip edge is formed by a V-shaped protrusion on the surface with an edge aligned in the direction of the gravitational force and two flanks leading away from it. The two flanks are each made of different materials. The first flank, which is aligned with the surface wetted by the liquid, may then have an attractive behavior with respect to the liquid, while the second flank may have a repulsive behavior with respect to the liquid. “Attractive” means good wettability, while repulsive is defined as more difficult to wet. The first flank of the two-component drip edge can be wetted better with the liquid than the second flank.
The wettability of a surface with a certain liquid depends on the surface tensions of the substances involved, i.e., the materials of the flanks and the liquid. It is true in general that a material with a higher surface tension or a surface tension approximately equal to that of the liquid can be wetted better than a material having a lower surface tension than the liquid. Materials whose surface tension is greater than or equal to that of the liquid have an attractive behavior with respect to the liquid and can be considered to be readily wettable. Materials whose surface tension is lower than that of the liquid have a repulsive behavior with respect to the liquid and can be considered to be readily wettable.
The surface tension of the liquid should therefore be less than or approximately the same as the surface tension of the first flank and greater than the surface tension of the second flank.
Those skilled in the art are familiar with methods of determining wettability, such as contact angle analyses, for example.
The material of the first flank thus has a higher surface tension than the material of which the second flank is formed. Since a drip edge is used as protection with respect to unwanted liquid contact, the two-component drip edge is disposed on the surface in such a way the first flank, which is more readily wettable, is aligned toward the surface wetted with liquid, while the second flank, which is less readily wettable, is disposed on the opposite side, where the liquid contact should be prevented.
The border between the two materials runs along the edge of the drip edge. The edge is preferably designed in a straight line. The surfaces of the flanks may also be designed to be planar. However, the surfaces of the flanks may also be designed with a curvature.
If the surface if wetted with liquid, this liquid will first spread out to the tip, i.e., the edge, of the drip edge. A droplet is formed at the edge, driven by the gravitational force. In addition to the gravitational force, the formation of a droplet here is also promoted by the change in material along the edge of the drip edge because the material of which the second flank of the drip edge is formed has a lower surface tension and thus has a repulsive behavior with respect to the liquid.
The device according to the disclosure may also be designed in the form of a rotationally symmetrical body, in which the two-component drip edge is disposed in a circular pattern around the rotationally symmetrical body, for example, a cylinder, and is directed outward. While the cylinder is rotating, the two-component design of the drip edge ensures a controlled dripping of the liquid.
The device according to the invention may also be designed as materials of which the first flank of the two-component drip edge is formed, i.e., materials having an attractive behavior with respect to the wetting liquid, i.e., with a higher surface tension, such as iron, polyamide, polyethylene terephthalate, polymethyl methacrylate, polyethylene, polyvinyl chloride, polyoxymethylene, polystyrene or steel, for example.
The device according to the invention may contain as materials of which the second flank of the two-component drip edge is formed, i.e., materials having a repulsive behavior with respect to the wetting liquid, i.e., with a lower surface tension, for example, polypropylene, paraffin wax, epoxy resin or Teflon.
In one embodiment, the two-component drip edge may be formed with a first flank made of steel and a second flank made of Teflon.
The flanks of the two-component drip edge may form an angle between 20° and 120°, preferably an angle between 20° and 60°. The angle formed by the flanks with the surface may be asymmetrical. It is advantageous in particular if the second flank forms a small angle to the gravitational force, so that the liquid can rise as little as possible. The more acute the angle, the more effective is the drip action.
The height of the drip edge, i.e., the distance of the edge of the drip edge from the surface, depends on the dimensions of the surface. The drip edge may have a height of 4-20 mm, for example.
The width of the drip edge on the surface is obtained from the angle of the edges and the height of the drip edge. If the drip edge has a height of 4-20 mm and the angle is between 20° and 120°, the width may be 3-20 mm, for example.
In one embodiment, a roller is provided for transferring liquids with a drip edge according to the invention. For example, such rollers are used in printing machines, in which ink is transferred from an ink pan through a pan roller onto a receiving roller, which then in turn prints the ink on the object to be printed.
The roller according to the invention consists of a transfer cylinder, which is provided with connecting pieces on the two longitudinal ends. The transfer cylinder is partially immersed in a liquid, such as ink, for example, during operation, or it picks up the liquid from another roller. The transfer cylinder has a relatively large diameter. In any case, the diameter must be larger than that of the connecting pieces, so that these are not immersed in the liquid bath. For example, it may have a diameter of 8-50 cm, preferably between 10 and 25 cm.
The connecting pieces should not be immersed in the liquid or come in contact with the roller that supplies liquid. Therefore, they must have a smaller diameter than that of the transfer cylinder. They are used for fastening the transfer cylinder in the bearing and for connection of the drive of a rotary motor of a printing machine, for example, which causes the transfer cylinder to rotate. The connecting pieces must have a diameter, which ensures mechanical stability with respect to sagging or breaking of the roller. The diameter of the connecting pieces may be between 4 cm and 12 cm, for example.
The connecting pieces of the roller according to the disclosure each have at least one two-component drip edge, which is disposed in a circular pattern around the connecting piece. The two-component drip edge is disposed on the connecting piece in such a way that the flank made of the material having the attractive property, i.e., the material having the higher surface tension, is disposed in the direction of the transfer cylinder, and the flank made of the material having the repulsive property, i.e., having the lower surface tension, is disposed in the direction of the ends of the rollers, so that spreading of the liquid, for example, the ink, into the bearings of the printing machine is prevented.
The flanks of the two-component drip edge may form an angle between 20° and 120°. The first flank may be designed to be shallower than the second flank.
The height of the drip edge, i.e., the distance of the edge of the drip edge from the surface, depends on the dimensions of the surface. The drip edge may have a height of 4-20 mm, for example.
The width of the drip edge on the surface is obtained from the angle of the edges and from the height of the drip edge, which may amount to 3-30 mm, for example.
The invention also relates to the use of a device having a two-component drip edge according to one of claims 2 to 14 for producing a low-maintenance transfer roller for a printing machine.
The invention also relates to a printing machine having a roller according to any one of claims 9 to 14.
The first flank of the drip edge is formed from the material of the connecting part (7), namely steel in this case. The two flanks of the two-component drip edge in this case form an angle of 97°, with the first flank (3) advantageously being designed to be shallower than the second flank (4) in relation to the axis of the connecting part. The second flank (4) consists of a Teflon ring mounted directly on the first flank (3) and secured by the clamping ring (10). The roller may be installed in a printing machine, for example, with the bearings (11).
The pan roller (15) is secured in the printing machine (16) by means of the connecting parts (7) and bearings (11) and connected to the rotary motor (12). Due to the disposition of the drip edges, the ink drips off above the immersion bath and cannot leak into the bearings and the motor. A printing machine according to the invention therefore requires less maintenance.
surface (1)
edge (2)
first flank (3)
second flank (4)
liquid (5)
transfer cylinder (6)
connecting parts (7)
single-component pre-drip edge (8)
single-component pre-drip edge (9)
clamping ring (10)
bearing (11)
rotary motor (12)
printing roller (13)
immersion bath (14)
pan roller (15)
printing machine (16)
wettable surface (17)
edge (18)
first flank (19)
second flank (20)
Number | Date | Country | Kind |
---|---|---|---|
10 2016 007 574.0 | Jun 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/064893 | 6/19/2017 | WO | 00 |