Two cycle heat engine

Information

  • Patent Grant
  • 6272855
  • Patent Number
    6,272,855
  • Date Filed
    Tuesday, June 13, 2000
    24 years ago
  • Date Issued
    Tuesday, August 14, 2001
    23 years ago
  • Inventors
  • Examiners
    • Nguyen; Hoang
    Agents
    • Fattibene & Fattibene
    • Fattibene; Paul A.
    • Fattibene; Arthur T.
Abstract
A heat engine having two stages, a first low temperature chamber and a second high temperature chamber. A low boiling point liquid or solution is heated in a first low temperature chamber to slightly above the boiling point. A second high temperature chamber having electric heating coils therein is injected with the returned condensed liquid at predetermined times causing a high vapor pressure driving a piston. The expanding vapor or gas is returned though an exhaust port and condensed by a cooling chamber to be returned to the solution or liquid reservoir. The piston is used to do work and may be coupled to a generator. Different piston configurations may be used. The heat engine of the present invention has the advantage of using a relatively low boiling point liquid, which may be heated by a variety of fuel sources, including solar energy. The invention has a relatively quick response time as a result of the second high temperature chamber. The heat engine can be used to drive any number of machines or device efficiently using relatively low temperatures.
Description




FIELD OF THE INVENTION




The present invention relates in general to a heat engine and, and more particularly to a two stage heat engine using a low boiling point liquid.




BACKGROUND OF THE INVENTION




There are many different types of heat engines. One heat engine is disclosed in U.S. Pat. No. 5,983,640 entitled “Heat Engine” and issuing to Czaja on Nov. 16, 1999. Therein disclosed is an open cycle heat engine using an air-steam mixture. Most engines typically use water that is converted into steam. Water boils at about one hundred degrees centigrade or two hundred and twelve degrees Fahrenheit at sea level atmospheric pressure. The steam produced by boiling water is often used to drive a piston. However, general relativity high heat is required to boil water. Additional the high temperature water may cause corrosion in many parts of the engine. Additionally, such engines are not as efficient as they could be. Additionally, there is often a delay in heating the water, which causes the engine to respond slowly. Therefore there is a need for a lower temperature faster response heat engine.




SUMMARY OF THE INVENTION




The present invention relates to a two stage heat engine that uses a low boiling point liquid heated at a first stage or chamber and liquid injected into the higher temperature second stage or chamber causing rapid vaporization of the liquid. The vapor expands and drives a piston in a cylinder. The piston is connected by a rod and a crank to a flywheel, which turns a generator. Detectors sense the position of the piston and open a port when the piston has traveled to its fullest extent causing exhausted vapor to be condensed and returned to the first chamber. A portion of the returned condensed liquid is used for injection into a second high temperature chamber. A low boiling point liquid such as freon, alcohol, or ether may be used. By freon it is meant one of a group of polyhalogenated derivatives of methane and ethane containing fluorine and, in most cases, chlorine or bromine.




Accordingly it is an object of the presence invention to provide an efficient heat engine.




It is another object of the present invention to use a relatively low temperature heat source in the first chamber.




It is an advantage of the present intention that it responses relatively quickly.




It is another advantage of the present invention that it uses a relatively low temperature heat source.




It is a feature of the presence invention that a second high temperature heat chamber is used.




It is another feature of the present intention that a low boiling point liquid is used.




These and other objects, advantages, and features will become readily apparent in view of the following description.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

schematically illustrates the presence invention.





FIG. 2

is a block diagram illustrating the process steps of the present invention.





FIG. 3

schematically illustrates another embodiment of the present invention.





FIG. 4A

schematically illustrates another embodiment of the present invention.





FIG. 4B

schematically illustrates a plan view of the embodiment illustrated in FIG.


4


A.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

schematically illustrates the heat engine of the present invention. A cylinder


10


contains a piston


12


having a rod


14


connected thereto. Rod


14


is pivotally connected to a crank, which in turn is connected to a flywheel


18


. Flywheel


18


is connected to a generator


20


. Generator


20


may be connected to a load


21


. The load


21


may be any system or equipment that needs electricity to run. Placed within the bottom portion of cylinder


10


is a heat chamber


22


. The heat chamber


22


is used to heat a solution or liquid


24


. The solution or liquid


24


preferably has a low boiling point. By low boiling point it is meant a temperature less than one-hundred degrees Celsius or two hundred and twelve degrees Fahrenheit. The heat chamber


22


may be heated by any means such as solid, liquid, or gas fuels that are burned. The heat chamber


22


may also be heated by solar energy. The heat chamber


22


is a low temperature chamber that heats the liquid


24


, which may be a mixture of two or more liquids, to a temperature slightly above the boiling point of the liquid


24


. Vapor from the heating of the liquid


24


is formed in the vapor pressure chamber


26


. A second high temperature chamber


28


has electric coils


30


therein. A nozzle


34


is connected to injector


36


, which is connected to a pump


38


, which is connected to return tube


40


. Return tube


40


contains condensed liquid


24


. Liquid


24


maybe controllably injected into the second high temperature chamber


28


. Heat chamber


22


raises the temperature of the solution or liquid


24


slightly above the boiling point. Low-pressure vapor enters vapor pressure chamber


26


. When work is desired to be performed a portion of a liquid or solution is taken from the return tube


40


and is injected into the high temperature heat chamber


28


. The high temperature heat chamber


28


creates a high temperature causing high vapor pressure and expansion of the vapor into expansion chamber


32


. The piston


12


is caused to move upward within the cylinder


10


.




High-pressure sensor


42


, detects the high vapor pressure. The expanding vapor enters the expansion chamber


32


driving the piston


12


upward within the cylinder


10


causing the movement of the flywheel


18


. Cylinder top


15


has a cylinder top position sensor


46


. Cylinder top position sensor


46


detects the piston


12


when it advances to the uppermost position, shown in phantom at


12


A. The vapors are then caused to enter the exhaust port


48


. Low-pressure sensor


44


detects the low pressure. Cooling chamber


52


has cooling coils


54


therein. A cooling fluid is pumped through the cooling coils


54


by pump


56


. The cooling coils


54


cause the exhaust vapor to condense into a liquid


24


. The condensed liquid drains into the vapor chamber


26


through return tube


40


. The piston


12


is then caused to return to the bottom position starting another cycle. The position of the piston


12


is detected by the piston bottom position sensor


60


. The temperature sensor


58


monitors the temperature of the liquid


24


. The entire system is controlled by electronic control


62


, which is coupled to the heat chambered


22


, the temperature sensor


58


, the high pressure sensor


42


, the piston position sensor


60


, the pump


38


, the low pressure sensor


44


, the top piston position sensor


46


, the valve


50


, and the generator


20


.




The operation of the present invented can readily be appreciated with reference to FIG.


1


. Flywheel


18


provides rotational energy to generator


20


. The purpose of the flywheel


18


is to absorb any extra load imparted to the system. The use of the secondary high temperature chamber


28


results in a relatively fast acting heat engine. Exhaust vapor is caused to enter exhaust port


48


when the piston


12


has reached the uppermost position shown as piston location


12


A in phantom. The exhaust vapors are condensed by passing through cooling chamber


52


, and returned to the vapor pressure chamber


26


by return tube


40


. The cycle is thereby repeated continuous forming an efficient quick reacting heat engine that utilizes a relatively low boiling point fluid or solution


24


. Accordingly, the heat engine of the present invention can utilize different liquids that boil at relatively low temperatures, at least less than that of water or about two hundred and twelve degrees Fahrenheit or one hundred degrees Celsius.





FIG. 2

is a block diagram illustrating the method or process steps of the present invention. Block


110


represents heating a low boiling point liquid, having a boiling point at one atmosphere of less than one hundred degrees Celsius, in a first chamber. Block


112


represents injecting the liquid into a second chamber hotter than the first chamber. Block


114


represents confining the expanding gas to move a piston to do work. Block


116


represents condensing the vapor or gas and returning it to the first chamber.





FIG. 3

illustrates another embodiment of the present invention. This embodiment combines a heat engine, similar to that illustrated in

FIG. 1

, to a piston and flywheel assembly. The heat engine comprises a heat chamber


220


and a vapor chamber


226


having a solution or liquid


224


therein. A hot or expansion chamber


232


is associated with vapor chamber


226


. Placed within expansion chamber


232


are electric coils


230


. Adjacent to electric coils


230


is an injector


234


. The injector


234


injects a liquid into the expansion chamber


232


. The injector


234


may be coupled to a return tube


240


. Return tube


240


is coupled, through a valve


250


, to a cooling chamber


252


. Cooling chamber


252


has cooling coils


254


therein. Cooling chamber


252


is coupled to a tube


249


. A pressure input tube


210


is coupled to the expansion chamber


232


and provides vapor pressure to the piston and flywheel assembly. Pressure input tube opening


211


provides vapor pressure to a plurality of pistons P


1


, P


2


, P


3


,and P


4


. The vapor pressure causes pistons P


1


, P


2


, P


3


, and P


4


to move within respective cylinders


212


. A rod


214


connects each of the pistons P


1


, P


2


, P


3


, and P


4


to a respective crank wheel


219


. This causes the crank wheels


219


to rotate in the direction of arrows


217


. Crank wheels


219


in turn cause flywheel


218


to rotate in the direction of arrow


221


. Flywheel


218


may be connected to a generator or load to do work. Each of the cylinders


212


is coupled to an exhaust port


248


. Each of the exhaust ports


248


is coupled to tube


249


, which returns vapor to cooling chamber


252


.





FIG. 4A

illustrates yet another embodiment of the present invention. In this embodiment a heat engine is connected to another piston and flywheel assembly. The heat engine illustrated in

FIG. 4A

is similar to the heat engine illustrated in FIG.


1


and FIG.


3


. Heat chamber


320


heats a solution or liquid


324


in a vapor chamber


326


. A temperature sensor


358


monitors the temperature of the liquid


324


. A pressure sensor


342


monitors the pressure in vapor chamber


326


. Coils


330


are placed within an expansion chamber


332


. An injector


336


and nozzle


334


are used to inject a portion of condensed liquid


324


into the coils


330


. Pump


338


is coupled to a tube


340


, which in turn is coupled to liquid


324


in heat chamber


320


and valve


350


. Valve


350


controls the flow of condensed liquid from cooling chamber


352


. Cooling chamber


352


has coils


354


therein. Cooling chamber


352


is coupled to exhaust port


348


. Pressure sensor


344


monitors the pressure within the exhaust port


348


.




The expansion chamber


332


is coupled to a first cylinder


310


through a first pressure inlet tube


311


and a second cylinder


310


′ through a second pressure inlet tube


311


′. A first piston


312


and a second piston


312


′, initially in a first position P


0


, are forced to a second position P


1


due to the pressure introduced by the pressure inlet tubes


311


and


311


′. The pistons


312


and


312


′ are connected by rods


314


and


314


′ to crank wheels, respectfully. The crank wheels are not illustrated in FIG.


4


A. The crank wheels rotate on shaft


321


. The crank wheels are coupled to flywheels, with only flywheel


318


′ being illustrated in FIG.


4


A.





FIG. 4B

is a plan view illustrating the piston flywheel assembly illustrated in FIG.


4


A.

FIG. 4B

more clearly illustrates the connection between the pistons


312


and


312


′ and the crank wheels


319


and


319


′ and the flywheels


318


and


318


′ on shaft


321


. Shaft


321


is held by bearings


323


.




The operation of this embodiment can readily be appreciated with reference to

FIGS. 4A and 4B

. Liquid


324


is heated to a first temperature in vapor chamber


326


. Liquid injected into a chamber containing electric coils


330


causes a higher pressure in expansion chamber


332


. The high pressure vapor passes through inlet tubes


311


and


311


′ causing pistons


312


and


312


′ to move. This results in rotational energy being formed and stored in flywheels


318


and


318


′. This rotational energy can then be used for any desired purpose. The vapor is exhausted through exhaust port


348


and delivered to cooling chamber


352


where it is condensed to liquid repeating the cycle.




All of the embodiments of the present invention provide a heat engine that utilizes a low boiling point liquid or solution and is a closed system. Therefore, energy and the low boiling point liquid are not lost. This permits the cycle to be repeated continuously. The use of a low boiling point liquid requires low energy, with the electric coils and injection of liquid providing a boost of pressure in the expansion chamber. This provides a quicker reaction time to an increase pressure requirement.




Accordingly, the present invention provides an improved heat engine and means for providing power or work. The heat engine of the present invention is an efficient closed system that utilizes a low boiling point liquid.




Although several preferred embodiments have been illustrated and described, it will be obvious to those skilled in the art that various modifications may be made without departing form the spirit and scope if this invention.



Claims
  • 1. A heat engine comprising:a first chamber, whereby a low boiling point liquid selected from a group consisting of freon, alcohol, and ether is heated to a first temperature; a second chamber coupled to said first chamber and selectively heated to a second temperature, the second temperature being higher than the first temperature; a cylinder coupled to said second chamber; and a piston place within said cylinder, whereby when a liquid is injected into said second chamber a vapor is formed within said cylinder.
  • 2. A heat engine as in claim 1 further comprising:a condenser coupled to said cylinder and said first chamber, whereby gas is condensed into a liquid and returned to said first chamber.
  • 3. A heat engine as in claim 1 further comprising:a temperature sensor coupled to said first chamber; and a pressure sensor coupled to said first chamber.
  • 4. A heat engine as in claim 1 wherein:said first chamber is heated by solar energy.
  • 5. A heat engine as in claim 1 further comprising:a flywheel coupled to said piston; and a generator coupled to said flywheel.
  • 6. A heat engine comprising:a heat chamber; a vapor chamber adjacent said heat chamber; a liquid placed in said vapor chamber, said liquid having a boiling point below one hundred degrees Celsius; a high temperature chamber placed in said vapor chamber; electric coils placed in said high temperature chamber; at least four radially disposed cylinders coupled to said high temperature chamber and said vapor chamber; at least four radially disposed pistons, one each of said at least four radially disposed pistons placed within each of said at least four radially disposed cylinders; a flywheel coupled to said piston; a rod coupled to each of said at least four radially disposed pistons; a crank wheel connected to each of said rods, said crank wheel positioned so as to contact an inside surface of said flywheel, whereby said crank wheels are caused to rotate causing said flywheel to rotate; an exhaust port coupled to each of said at least four radially disposed cylinders; a cooling chamber coupled to said exhaust port, whereby gas from each of said at least four radially disposed cylinders is returned and condensed into said liquid; a return tube coupled to said cooling chamber and said vapor pressure chamber; a pump coupled to said return tube; and an injector coupled to said pump and said high temperature chamber, whereby the liquid is injected into said high temperature chamber.
  • 7. A heat engine as in claim 6 wherein:said liquid is selected from a group consisting of freon, alcohol, and ether.
  • 8. A heat engine as in claim 6 wherein:said heat chamber is heated by solar energy.
  • 9. A heat engine comprising:a liquid having a boiling point less than water; means for heating said liquid to a first temperature creating a gas; means, placed within said means for heating said liquid to a first temperature, for heating said liquid to a second temperature, said second temperature being higher than said first temperature; means, coupled to said means for heating said liquid to a first temperature, for performing work with the gas; and means, coupled to said means for performing work, for condensing the gas to said liquid and returning said liquid to said means for heating said liquid to a first temperature, whereby said liquid is heated forming a gas to do work and the gas is condensed forming liquid in a closed cycle.
  • 10. A heat engine as in claim 9 wherein:said liquid is selected from a group consisting of freon, alcohol, and ether.
  • 11. A heat engine comprising:a heat chamber; a source of heat, whereby said heat chamber is heated to a first temperature; a vapor chamber adjacent said heat chamber; a liquid placed in said vapor chamber, said liquid having a boiling point below one hundred degrees Celsius; a high temperature chamber placed in said vapor chamber; electric coils placed in said high temperature chamber; a cylinder coupled to said high temperature chamber and said vapor chamber; a piston placed within said cylinder; a flywheel coupled to said piston; an exhaust port coupled to said cylinder; a cooling chamber coupled to said exhaust port, whereby vapor from said cylinder is returned and condensed into said liquid; a return tube coupled to said cooling chamber and said vapor pressure chamber; a valve coupled to said return tube between said cooling chamber and said vapor chamber; a pump coupled to said return tube; an injector coupled to said pump and said high temperature chamber, whereby said liquid is injected into said high temperature chamber; a temperature sensor placed adjacent said liquid; a high pressure sensor coupled to said vapor chamber; a low pressure sensor coupled to said exhaust port; a piston position sensor coupled to said piston; and an electronic control, said electronic control coupled to said heat chamber, said temperature sensor, said high pressure sensor, said low pressure sensor, said piston position sensor, and said valve, whereby an efficient closed cycle is utilized to perform work.
  • 12. A method of using an expanding gas to do work comprising the steps of:heating a liquid in a first chamber, the liquid selected from a group consisting of freon, alcohol, and ether; heating a second chamber; injecting the liquid into the second chamber creating a gas, the second chamber being hotter than the first chamber; expanding the gas to do work; and condensing the gas and returning the liquid to the first chamber.
  • 13. A heat engine comprising:a first chamber containing a low boiling point liquid; a heat chamber placed adjacent said first chamber and heating the low boiling point liquid to a first temperature creating a vapor pressure; a second chamber coupled to said first chamber; an electric coil placed within said second chamber, wherein said second chamber is selectively heated to a second temperature, the second temperature being higher than the first temperature; an injector adjacent said second chamber, said injector injecting the low boiling point liquid into said second chamber; a cylinder coupled to said second chamber; a cylinder top closing one end of said cylinder; a piston place within said cylinder, said piston having a high pressure side adjacent said second chamber and a low pressure side adjacent said cylinder top, an exhaust port placed in said cylinder, said exhaust port having a position adjacent said cylinder top such that the exhaust port is open to the low pressure side of said piston; a condenser coupled to said exhaust port and said injector, whereby said condenser causes a low pressure to be formed on the low pressure side of said piston when vapor is condensed by said condenser and the low boiling point liquid is returned to said first chamber and said injector; a return tube coupled to said first chamber, said condenser, and said exhaust port; a valve placed within said return tube, whereby when said valve is open pressure on the low pressure side and the high pressure side of said piston are equalized; a high pressure sensor coupled to said first chamber; a low pressure sensor coupled to said exhaust port; and a control coupled to said valve, said high pressure sensor, and said low pressure sensor, whereby said valve is selectively opened, whereby when the low boiling point liquid is injected into said second chamber a vapor is formed moving said piston within said cylinder as a result of a high pressure on the high pressure side of said piston and a low pressure on the low pressure side of said piston.
US Referenced Citations (6)
Number Name Date Kind
3599425 Lewis Aug 1971
3956894 Tibbs May 1976
4077214 Burke, Jr. et al. Mar 1978
4220005 Cutts Sep 1980
5035115 Ptasinski Jul 1991
5983640 Czaja Nov 1999