The present disclosure relates in general to electronics, and more particularly to a two-dimensional graphene cold cathode, anode, and grid.
A processor may be used in many applications where the processing components are subject to intense heat and radiation. For example, a missile may carry a processor that operates at high temperatures, or a satellite may carry a processor that operates in a high radiation environment (e.g., solar protons or cosmic rays). However, heat and radiation may degrade or damage these processing components. Processors based on semiconducting materials, such as silicon, silicon-germanium, gallium arsenide, or gallium nitride, are particularly vulnerable to high heat and radiation. Consequently, these processors require heavy shielding and expensive cooling systems. Vacuum microelectronic devices are immune to these pernicious operating conditions and are thus more suitable for such operating environments. However, vacuum microelectronics have suffered from relatively high operating voltages and eventual failure due to cold cathode tip erosion.
According to one embodiment, a method includes forming a first diamond layer on a substrate and inducing a layer of graphene from the first diamond layer by heating the substrate and the first diamond layer. A second diamond layer may be formed on top of the layer of graphene and a mask may be applied to the diamond layer. The mask may include a shape of a cathode, an anode, and one or more grids. A two-dimensional cold cathode, a two-dimensional anode, and one or more two-dimensional grids may be formed by reactive-ion electron-beam etching. Each of the two-dimensional cold cathode, the two-dimensional anode, and the one or more two-dimensional grids may include a portion of the first diamond layer, the graphene layer, and the second diamond layer such that the graphene layer is positioned between the first diamond layer and the second diamond layer.
Technical advantages of certain embodiments may include extending the life of a cathode by preventing the erosion of the tip of a cathode. Another advantage may include lowering the operating voltage of a microelectronic and simplifying microelectronic design via phonon confinement. Other technical advantages will be readily apparent to one skilled in the art from the following figures, descriptions, and claims. Moreover, while specific advantages have been enumerated above, various embodiments may include all, some, or none of the enumerated advantages.
For a more complete understanding of the disclosed embodiments and their features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Processors may include electrodes, which are components through which electrons may enter or leave. One type of electrode is a cold cathode (e.g., a Spindt-type cathode). A cold cathode may emit electrons when subject to certain voltages. For example, a missile may have cathodes in its processor that are subject to intense heat and radiation as the missile travels to its target. Certain cathodes may have pointed tips that may deform or erode as the cathode emits electrons due to atomic spallation. The tips of these cathodes may become blunt and cause the processor to stop functioning.
To overcome these and other problems, a two-dimensional cold cathode may be formed using a layer of graphene positioned between two diamond layers in an embodiment. By positioning the layer of graphene between the two diamond layers, atoms in the cathode may be confined and remain in place such that tip erosion decreases or is eliminated altogether. Alternative embodiments may position the layer of graphene between other materials, such as silicon carbide, as explained below.
Accordingly, aspects of the present disclosure include a method that, in one embodiment, forms a first diamond layer on a substrate and induces a layer of graphene from the first diamond layer by heating the substrate and the first diamond layer. A second diamond layer may be formed on top of the layer of graphene and a mask may be applied to the diamond layer. The mask may include a shape of a cathode, an anode, and one or more grids. A two-dimensional cold cathode, a two-dimensional anode, and one or more two-dimensional grids may be formed by reactive-ion electron-beam etching. Each of the two-dimensional cold cathode, the two-dimensional anode, and the one or more two-dimensional grids may include a portion of the first diamond layer, the graphene layer, and the second diamond layer such that the graphene layer is positioned between the first diamond layer and the second diamond layer.
The present disclosure may provide numerous advantages. For example, a two-dimensional cold cathode with a layer of graphene confined by diamond or silicon carbide may decrease tip erosion by keeping graphene carbon atoms in place. As a result of the decreased tip erosion, the life of a cathode may be extended. As another example, a two-dimensional cold cathode with a layer of graphene confined by diamond or silicon carbide may lower the operating voltage of a microelectronic through phonon confinement. As yet another example, a two-dimensional cold cathode with a layer of graphene confined by diamond or silicon carbide may simplify microelectronic design because the vacuum microelectronic device may operate at a lower voltage. Operating at a lower voltage may allow for reduced cooling requirements, thereby reducing shielding and cooling costs, and weight.
Additional details are discussed in reference to
Aerial vehicle 110 may be any type of airborne vehicle configured in certain embodiments. For example, aerial vehicle 110 may be an airplane, a space shuttle, a satellite, a missile, or any other type of airborne vehicle. Although illustrated as aerial vehicle 110, environment 100 may include land-based vehicles (e.g., a boat or a motor vehicle or ground robot or structures (e.g., a radiation intense computing environment). Aerial vehicle 110 may include microelectronic 120 and vacuum microelectronic device 130 in certain embodiments.
Microelectronic 120 may be an electronic device of a very small scale in an embodiment. For example, microelectronic 120 may be micrometer scale or smaller. Microelectronic 120 may be a processing device in certain embodiments. Microelectronic 120 may include vacuum microelectronic device 130 in certain embodiments.
Vacuum microelectronic device 130 may be a device that controls electric current between electrodes in an evacuated container in an embodiment. For example, vacuum microelectronic device 130 may be a diode, a triode, a tetrode, a pentode, or any other type of electrode. As described more fully below, certain components of vacuum microelectronic device 130, such as two-dimensional cold cathode 220, may have a layer of graphene between layers of diamond or silicon carbide.
Substrate 210 may be one or more layers of material on which two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 are supported in an embodiment. Substrate 210 may be made of any type of material in certain embodiments. For example, substrate 210 may be made of silicon, silicon carbide, sapphire, diamond, tungsten, hafnium, or any other type of material. Substrate 210 may be made in any shape. For example, substrate 210 may be rectangular. As another example, substrate 210 may be circular. Substrate 210 may be coated with one or more layers of material in certain embodiments. For example, substrate 210 may be coated with a poly(hydridocarbyne) layer. As another example, substrate 210 may be coated with a poly(silyne-co-hydridocarbyne) layer. As another example, substrate 210 may be coated with a poly(methylsilyne) layer. Substrate 210 may be coated using any type of coating method. In some embodiments, substrate 210 may be coated with a graphene-inducing catalyst, such as iron or rhenium. For example, substrate 210 may be coated using a spin coating process. In that example, material may be deposited near the center of substrate 210 and substrate 210 may be rotated at high speeds such that the material evenly spreads out due to centrifugal force.
Two-dimensional cold cathode 220 may be an electrode from which electrons are emitted in certain embodiments. Two-dimensional cold cathode 220 may have a pointed tip 222 (e.g., to enhance cold electron emission) and two rounded edges (e.g., to suppress electron emission) in certain embodiments. Two-dimensional cold cathode 220 may be opposed to two-dimensional anode 230 in certain embodiments. Electrons flowing out of two-dimensional cold cathode 220 may flow to two-dimensional anode 230 through two-dimensional grids 240 in an embodiment. Two-dimensional cold cathode 220 may be supported by substrate 210 in an embodiment. Two-dimensional cold cathode 220 may be formed according to the methods described in
Two-dimensional anode 230 may be an electrode that collects the electrons emitted from two-dimensional cold cathode 220 in certain embodiments. Two-dimensional anode 230 may be positioned opposite to two-dimensional cold cathode 220 in an embodiment. Two-dimensional anode 230 may have rounded edges in an embodiment. Two-dimensional anode 230 may be supported by substrate 210 in an embodiment. Two-dimensional anode 230 may be formed according to the methods described in
Two-dimensional grids 240 may be any component configured to control the flow of electrons from two-dimensional cold cathode 220 to two-dimensional anode 230 in certain embodiments. Two-dimensional grids 240 may be any shape in an embodiment. Two-dimensional grids 240 may have rounded edges in an embodiment. Two-dimensional grids 240 may be positioned between two-dimensional cold cathode 220 and two-dimensional anode 230 in embodiments. Two-dimensional grids 240 may be opposed to other grids with a space separating the opposing two-dimensional grids 240 in an embodiment. Any number of two-dimensional grids 240 may be used. For example, vacuum microelectronic device 130 may include two two-dimensional grids 240 to create a tetrode. As another example, vacuum tube 130 may include three two-dimensional grids 240 to create a pentode. Two-dimensional grids 240 may be formed according to the methods described in
First diamond layer 250 may be a layer of diamond formed according to the method of
Graphene layer 260 may be a sheet of carbon atoms such that the sheet is one atom thick in an embodiment. In certain embodiments, multiple graphene layers 260 may be used. Graphene layer 260 may be formed according to the method of
Second diamond layer 270 may be a layer of diamond formed according to the method of
First silicon carbide layer 280 may be a layer of silicon carbide formed according to the method of
Graphene layer 285 may be a sheet of carbon atoms such that the sheet is one atom thick in an embodiment. Graphene layer 285 may be formed according to the method of
Second silicon carbide layer 290 may be a layer of silicon carbide formed according to the method of
In an alternative embodiment, a layer of diamond may be used instead of second silicon carbide layer 290. In this embodiment, graphene layer 285 may be spin coated with a layer of poly(hydridocarbyne). The layer of poly(hydridocarbyne) may be thermalized to form a layer of diamond on top of graphene layer 285 in certain embodiments. For example, the layer of poly(hydridocarbyne) may be baked at up to 800 degrees Celcius such that the poly(hydridocarbyne) forms diamond. In this embodiment, each of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grid 240 may have first silicon carbide layer 280, graphene layer 285, and a layer of diamond. Graphene layer 285 may be positioned on top of first silicon carbide layer 280 and below the layer of diamond. As a result, graphene layer 285 may be confined by first silicon carbide layer 280 and the layer of diamond such that the carbon atoms may remain in place and pointed tip 222 of two-dimensional cold cathode 220 may not erode.
At step 320, graphene layer 260 may be induced from first diamond layer 250 by heating substrate 210 and first diamond layer 250 in an embodiment. For example, substrate 210 and first diamond layer 250 may be heated in a temperature range between 900 and 1900 degrees Celcius. As another example, substrate 210 and first diamond layer 250 may be heated in a temperature range between 400 and 500 degrees Celcius to induce graphene formation. As a result of heating substrate 210 and first diamond layer 250, graphene layer 260 may be formed or grown on top of first diamond layer 250.
At step 330, second diamond layer 270 may be formed on top of graphene layer 260 in an embodiment. Second diamond layer 270 may be formed on graphene layer 260 by first coating graphene layer 260 with a poly(hydridocarbyne) layer in an embodiment. Graphene layer 260 may be coated with the poly(hydridocarbyne) layer in any manner. For example, graphene layer 260 may be spin coated. In that example, the poly(hydridocarbyne) layer may be deposited near the center of graphene layer 260, and graphene layer 260 may be rotated at high speeds such that the material evenly spreads out due to centrifugal force. Once graphene layer 260 is coated with the poly(hydridocarbyne) layer, the poly(hydridocarbyne) layer may be thermalized to form second diamond layer 270 in an embodiment. For example, the poly(hydridocarbyne) layer may be baked or heated in an inert atmosphere. In certain embodiments, the poly(hydridocarbyne) layer may be thermalized at various temperatures to form second diamond layer 270. For example, the poly(hydridocarbyne) layer may be heated at 800 degrees Celcius. As another example, the poly(hydridocarbyne) layer may be heated between 150 and 800 degrees Celcius. In certain embodiments, the poly(hydridocarbyne) layer may be thermalized in an inert atmosphere.
At step 340, a mask may be applied to second diamond layer 270. The mask may include a two-dimensional shape of a cathode, an anode, and one or more grids in certain embodiments. The mask may facilitate the reactive-ion electron-beam etching of the geometries of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240. For example, as electrons impact the top surface of second diamond layer 270, the reactive ions may remove diamond in unmasked areas and may not remove any diamond in masked areas (e.g., the geometries of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240).
At step 350, two-dimensional cold cathode 220, two-dimensional anode 230, and one or more two-dimensional grids 240 may be formed by reactive-ion electron-beam etching around the mask of step 340 in an embodiment. For example, reactive-ions may impact a top surface of second diamond layer 270 and remove any material that is unmasked. Because the geometries of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 are masked, the electrons may not remove material within the masked geometries of those components, thereby forming two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 in an embodiment. As a result, each of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 may include a portion of first diamond layer 250, graphene layer 260, and second diamond layer 270 such that graphene layer 260 is positioned between first diamond layer 250 and second diamond layer 270. Positioning graphene layer 260 between first diamond layer 250 and second diamond layer 270 may prevent carbon atoms from escaping and eroding pointed tip 222 of two-dimensional cold cathode 220.
As an example embodiment of operation, first diamond layer 250 may be formed on substrate 210, such as by coating substrate 210 with poly(hydridocarbyne) and thermalizing poly(hydridocarbyne). Graphene layer 260 may be induced from first diamond layer 250 by heating first diamond layer 250. Second diamond layer 270 may be formed on top of graphene layer 260, such as by coating graphene layer 260 with poly(hydridocarbyne) and thermalizing poly(hydridocarbyne). A mask may be applied to the top surface of second diamond layer 270 in the geometries of a cathode, an anode, and one or more grids. Two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 may be formed by electron-beam etching. Each of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 may include a portion of first diamond layer 250, graphene layer 260, and second diamond layer 270.
At step 420, graphene layer 285 may be induced from first silicon carbide layer 280 by heating substrate 210 and first silicon carbide layer 280 in an embodiment. Substrate 210 and first silicon carbide layer 280 may be heated at a range of temperatures to form graphene layer 285, such as between 1500 and 1700 degrees Celcius. Inducing graphene layer 285 from first silicon carbide layer 280 may result from the thermal decomposition of the top surface of first silicon carbide layer 280 in some embodiments.
At step 430, second silicon carbide layer 290 may be formed on top of graphene layer 285 in an embodiment. Second silicon carbide layer 290 may be formed by coating graphene layer 285 with a layer of poly(methylsilyne) or poly(silyne-co-hydridocarbyne) in certain embodiments. In those embodiments, once graphene layer 285 is coated with the layer of poly(methylsilyne) or poly(silyne-co-hydridocarbyne), the layer of poly(methylsilyne) or poly(silyne-co-hydridocarbyne) may be thermalized to form second silicon carbide layer 290. For example, the layer of poly(methylsilyne) or poly(silyne-co-hydridocarbyne) may be heated at a range of temperatures, such as between 1500 and 1700 degrees Celcius. In this embodiment, graphene layer 285 may be constrained by first silicon carbide layer 280 and second silicon carbide layer 290.
In an alternative embodiment, a diamond layer may be formed on top of graphene layer 285. In that embodiment, the diamond layer may be formed by coating graphene layer 285 with a layer of poly(hydridocarbyne) as described in the method of
At step 440, a mask may be applied to second silicon carbide layer 290 in an embodiment. The mask may include a two-dimensional shape of a cathode, an anode, and one or more grids in certain embodiments. The mask may facilitate the reactive ion electron-beam etching of the geometries of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240. For example, as reactive-ions impact the top surface of second silicon carbide layer 290, the electrons may remove silicon carbide in unmasked areas and may not remove silicon carbide in masked areas.
At step 450, two-dimensional cold cathode 220, two-dimensional anode 230, and one or more two-dimensional grids 240 may be formed by reactive-ion electron-beam etching in an embodiment. For example, reactive ions may impact a top surface of second silicon carbide layer 290 and remove any material that is unmasked. Because the geometries of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 are masked, the electrons may not remove material within the masked geometries of those components thereby forming two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240. As a result of the steps described in steps 410 through 450, each of two-dimensional cold cathode 220, two-dimensional anode 230, and one or more two-dimensional grids 240 may include a portion of first silicon carbide layer 280, graphene layer 285, and second silicon carbide layer 290 (or a diamond layer in an alternative embodiment) such that graphene layer 285 may be positioned between first silicon carbide layer 280 and second silicon carbide layer 290 (or a diamond layer). Positioning graphene layer 285 between first silicon carbide layer 280 and second silicon carbide layer 290 (or a diamond layer) may prevent carbon atoms from escaping and eroding pointed tip 222 of two-dimensional cold cathode 220.
As an example embodiment of operation, first silicon carbide layer 280 may be formed on substrate 210. Graphene layer 285 may be induced from first silicon carbide layer 280 by heating first silicon carbide layer 280 and substrate 210. Second silicon carbide layer 290 may be formed on top of graphene layer 285. A mask may be applied to second silicon carbide layer 290 in the geometries of a cathode, an anode, and one or more grids. Two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 may be formed by electron-beam etching. Each of two-dimensional cold cathode 220, two-dimensional anode 230, and two-dimensional grids 240 may have a portion of first silicon carbide layer 280, graphene layer 285, and second silicon carbide layer 290.
The present disclosure may provide numerous advantages. For example, a two-dimensional graphene cold cathode may increase electron mobility while constraining carbon atoms thereby lowering operating voltage and decreasing tip erosion. As a result of the decreased tip erosion, the life of a cathode may be extended. As another example, phonon confinement of a two-dimensional graphene cold cathode may lower the operating voltage of a microelectronic. As yet another example, a two-dimensional graphene cold cathode may simplify microelectronic design by its intrinsic heat and radiation tolerance thereby reducing cooling and radiation shielding costs and weight.
Although the present disclosure has been described with several embodiments, a myriad of changes, variations, alterations, transformations, and modifications may be suggested to one skilled in the art, and it is intended that the present disclosure encompass such changes, variations, alterations, transformations, and modifications as fall within the scope of the appended claims. For example, graphene layer 260 may be replaced with an electrically conductive boron-doped diamond layer. In that example, substrate 210 may be coated with three layers: a first poly(hydridocarbyne) layer, a layer of boron-doped poly(hydridocarbyne), and a second poly(hydridocarbyne) layer. Those layers may then be thermalized at temperatures between 150 and 800 degrees Celcius. The first and second poly(hydridocarbyne) layers may thermalize to form diamond, and the boron-doped poly(hydridocarbyne) layer may thermalize to form an electrically boron-doped diamond layer. Once thermalized, masking and reactive-ion electron-beam etching may be used to form two-dimensional cold cathode 220, two-dimensional anode 230, and one or more two-dimensional grids 240. In this example, each of two-dimensional code cathode 220, two-dimensional anode 230, and two-dimensional grids 240 may have a first layer of diamond, a layer of boron-doped diamond, and a second layer of diamond such that the layer of boron-doped diamond is positioned between the first layer of diamond and the second layer of diamond. As a result, the layer of boron-doped diamond may be phonon-constrained the first and second layers of diamond.
This application is a divisional of U.S. patent application Ser. No. 15/145,955 filed May 4, 2016, and titled “Two-Dimensional Graphene Cold Cathode, Anode, and Grid.”
Number | Name | Date | Kind |
---|---|---|---|
4827177 | Lee | May 1989 | A |
5173635 | Kane | Dec 1992 | A |
5204588 | Ugajin | Apr 1993 | A |
5289086 | Kane | Feb 1994 | A |
5647998 | Potter | Jul 1997 | A |
5786658 | Tsukamoto | Jul 1998 | A |
5973444 | Xu et al. | Oct 1999 | A |
6097138 | Nakamoto | Aug 2000 | A |
6440763 | Hsu | Aug 2002 | B1 |
6577045 | Blyablin et al. | Jun 2003 | B1 |
7160169 | Park | Jan 2007 | B2 |
7264978 | Ito | Sep 2007 | B2 |
8692226 | Cheatham, III et al. | Apr 2014 | B2 |
8802514 | Haensch et al. | Aug 2014 | B2 |
8809153 | Afzali-Ardakani et al. | Aug 2014 | B2 |
8834967 | Afzali-Ardakani et al. | Sep 2014 | B2 |
20020160111 | Sun et al. | Oct 2002 | A1 |
20130169142 | Hyde et al. | Jul 2013 | A1 |
20130285009 | Lee et al. | Oct 2013 | A1 |
20150060757 | Lee et al. | Mar 2015 | A1 |
20150206699 | Liu et al. | Jul 2015 | A1 |
20150206748 | Sumant et al. | Jul 2015 | A1 |
20150243468 | Duncan et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
102103953 | Jun 2011 | CN |
102339712 | Feb 2012 | CN |
103846415 | Jun 2014 | CN |
101438733 | Sep 2014 | KR |
Entry |
---|
Subramanian, K. et al., “A review of recent results on diamond vacuum lateral field emission device operation in radiation environments,” Microelectronic Engineering, Mar. 31, 2011, pp. 2924-2929. |
Dmitriev, A. N. et al., “Model of a Vacuum Microtriode with a Field Emission Cathode Based on the Graphitized Surface of Silicon Carbide,” Microelectronic Devices and Systems, Semiconductors, vol. 46, No. 13, 2012, pp. 1598-1603. |
European Patent Office, Extended European Search Report, Application No. 17167565.5, dated Nov. 7, 2017, 7 pages. |
Fonoberov, V. A. et al., “Giant Enhancement of the Carrier Mobility in Silicon Nanowires with Diamond Coating,” Nano Letters 2006, vol. 6, No. 11, Oct. 19, 2006, pp. 2442-2446. |
Han, J. et al., “Vacuum nanoelectronic: Back to the future?—Gate insulated nanoscale vacuum channel transistor,” Applied Physics Letters 100, 213505 (2012), May 23, 2012, pp. 213505-213505-4. |
Vanderbilt Engineers Design Diamond Circuits for Extreme Enviroments, “Vanderbilt University School of Engineering,” http://engineering.vanderbilt.edu/news/2011/vanderbilt-engineers-design-diamond-circuits-f, May 3, 2016, pp. 1-7. |
Wisitsorat-At, A., “Micropatterned Diamond Vacuum Field Emission Devices,” Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University, May 2002. |
European Patent Office, Communication pursuant to Article 94(3) EPC, Application No. 17167565.5, dated May 28, 2018, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20180294131 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15145955 | May 2016 | US |
Child | 15730212 | US |