The invention relates to a system and method for using a microfluidic apparatus for performing two-dimensional separations of biomolecular materials.
Existing protein analysis technology is largely based upon two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), which has undeniably assumed a major role and is central to much of what is now described as “proteomics.” Typically, proteins are separated by charge in a first dimension, based on isoelectric focusing in a pH gradient medium, and by size in a second dimension, based on molecular weight in a polyacrylamide gel containing sodium dodecyl sulfate (SDS). When proteins are radiolabeled, or stained, their positions in the gel are detected by autoradiography, or densitometry, respectively.
Despite the selectivity of 2-D PAGE, existing techniques are a collection of manually intensive procedures and time-consuming tasks prone to irreproducibility and poor quantitative accuracy. Thus, automated, high resolution, rapid, reproducible, and ultrasensitive 2-D separation techniques would be advantageous for large-scale analysis of proteins.
Microfluidic platforms offer fast, accurate, and low cost electrokinetic systems for high-throughput 2-D PAGE. One drawback of existing systems is a lack of methodology to detect protein separations in microchannels. Performance of the isoelectric focusing and the size based separation can be monitored by detecting the proteins in microchannels. A robust detection system of proteins in microchannels, is not only important for identification of proteins, but also important for quantification of proteins, with accuracy and resolution.
Another drawback of the application of existing microfluidic techniques to 2-D PAGE devices is a lack of methods to introduce different separation media into different dimensions in the same unit. Performing both charge and size based separations in one miniaturized 2-D PAGE device is desirable for high-throughput purpose.
Another drawback of the application of existing microfluidic techniques to 2-D PAGE devices is a lack of methods to transfer proteins simultaneously from first to second dimensions without significant loss in resolution. In existing methods, protein analytes are continuously sampled in the first dimension and transferred to the second dimension. To date, sufficient resolution has not been achieved using existing methods.
A problem with microfluidic devices for 2-D DNA gel electrophoresis is the lack of convenient, effective methodology to transfer DNA molecules from a first dimension to a second dimension after separation of molecules in the first dimension. Microfluidic devices for 2-D DNA gel electrophoresis also suffer from the lack of a convenient method or device for high throughput and high resolution second dimension separation. Current approaches using DGGE or other currently available gel based methods for this sequence-dependent separation in microfluidic devices have limitations in handling for high throughput purposes.
These and other drawbacks exist.
One advantage of the invention is that it overcomes these and other drawbacks in existing systems by providing a microfluidic apparatus for performing 2-D biomolecular separations. The microfluidic 2-D device may comprise first and second planar substrates which include at least a first dimension microchannel extending in a first direction and an array of second dimension microchannels extending in a second direction, preferably, orthogonal to the first dimension. The ends of at least some of the microchannels are in fluid communication with a plurality of reservoirs. The substrates may further comprise a number of microchannels and reservoirs. The reservoirs are in electrical communication with a plurality of electrodes and voltage power sources. The device enables two dimensional separations of proteins, DNA, and other biomolecules. According to another aspect of the invention, an isoelectric point based separation is enabled in a first dimension, and a size based separation in a second dimension.
Another advantage of the invention is that it enables introduction of two different media in different microchannels of the same 2-D microfluidic device (e.g., a media for isoelectric point based separation, and a media for size based separation). In one embodiment, a pressure filling technique may be used to introduce the two different media. Electroosmotic or other electrokinetic pumping may also be used to introduce the two different media. In some embodiments, a polymeric membrane sandwiched between the upper and the lower microchannels may serve as a hydrodynamic barrier, enabling the introduction of two different separation media in the upper and the lower microchannels. Other filling approaches may be used.
Another advantage of the invention is that it enables simultaneous transfer of proteins from first dimension microchannels to second dimension microchannels (e.g., by changing the electric potentials at the reservoirs connected to the microchannels). Any separation accomplished in the first dimension may be completely retained upon transfer to the second dimension. In some embodiments, the transfer of material (e.g. proteins) from the first to the second dimension may be achieved by hydrodynamic pressure at the reservoirs connecting first dimension microchannels. In other embodiments, isoelectric focused proteins in the first dimension may be electrokinetically injected into the second dimension, by altering the electric potentials at the reservoirs connecting microchannels. This simultaneous transfer approach also significantly simplifies the procedures compared to those involved in continuous sampling and separation of the eluants from the first dimension.
Another advantage of the invention is that it enables high resolution detection of proteins in microchannels. In one embodiment, proteins may be covalently labeled with a florescent dye. During first and second dimension separations, the labeled proteins may be monitored using a florescent detector attached to the microfluidic system. In some embodiments, microchannels fabricated by polydimethylsiloxane (PDMS) substrates may be used which provide low florescence background during detection and enable better signal to background resolution. According to another embodiment of the invention, laser induced florescent detection (LIFD) may be employed for the detection of SDS-protein complexes using non-covalent, environment-sensitive, fluorescent probes.
In one embodiment, separation in the second dimension may be performed using a temperature gradient (e.g., a spatial or temporal temperature gradient). According to one embodiment of the invention, the biomolecular material comprises DNA and the first dimension separation is a sized-based separation and the second dimension separation is a sequence-based separation.
According to another aspect of the invention, to automate and increase the throughput of 2-D DNA gel electrophoresis, a 2-D plastic microfluidic network is provided for rapidly and accurately resolving DNA fragments based on their differences in size and sequence. The first dimension size-based separation may be performed in a known manner. Instead of continuously sampling DNA analytes eluted from the first size-separation dimension, one aspect of the invention relates to electrokinetically and simultaneously transferring the size-separated DNA fragments from the first dimension (e.g., a microchannel extending from left to right and connecting first and second reservoirs) to a microchannel array between third (and in some embodiments) and fourth reservoirs for performing a sequence-dependent separation. Preferably, the electrokinetic transfer occurs simultaneously in each of the second dimension microchannels. Increased throughput can be achieved by rapid size-based separations (e.g., in the range of 0-200 seconds) followed by simultaneous transfer of size-separated DNA fragments together with parallel sequence-dependent separations in the second dimension. This simultaneous transfer approach also significantly simplifies the procedures compared to those involved in continuous sampling and separation of the eluants from the first dimension.
According to another aspect of the invention, instead of using denaturing reagents such as urea and formamide, DNA fragments (or other materials) in the second dimension are resolved by using a temporal or a spatial temperature gradient. Since the “melting” of DNA fragments is a function of base sequence with GC-rich regions being more stable than AT-rich regions, sequence differences between fragments may be revealed as migration differences. Thus, the invention provides an automated, cost-effective, high throughput, rapid, and reproducible 2-D microfluidic gene scanner. Ultrasensitive measurements of these DNA fragments may then be achieved with an integrated optical detection system (e.g., by using laser-induced fluorescence detection (LIFD) with the addition of intercalating dyes such as ethidium bromide and thiazole orange in the electrophoresis buffer). This 2-D DNA separation platform can perform effectively with even minute DNA samples and enables automation and true system integration of size and sequence-dependent separations with real time fluorescence detection and imaging.
According to one embodiment, the second dimension transfer and the second dimension separation may occur by applying an electric field along the length of the one or more second-dimension microchannels while applying a temperature gradient, thereby denaturing the biomolecules and further separating the biomolecules based on their migration time through the gel contained therein.
According to some embodiments of the invention, various combinations and configurations of microchannels and reservoirs may be implemented to control intersection voltages and enable advantageous separation techniques. For example, in addition to first and second dimension microchannels, other microchannels (e.g., tertiary) may be implemented to enable advantageous separation techniques. Likewise, voltage control microchannels may be implemented to enable advantageous manipulation of samples. In addition, other reservoirs, grouping of microchannels (e.g., parallel groups feeding into respective reservoirs, multiple groups feeding into single, common microchannels, etc.) resistive elements and other configurations may enable advantageous sample separation and manipulation.
According to one embodiment a spatial temperature gradient is formed along the length of the one or more second-dimension microchannels. According to another embodiment, a temporal gradient is used. The temporal or spatial temperature gradient may be created using a variety of techniques including internal and external heat sources.
One aspect of the invention relates to 2-D microfluidic networks formed in plastic substrates (e.g., using template imprinting technologies) and integration of this technology with the computerized design of PCR primers that generate a large number of DGGE-optimized target fragments in one single reaction, i.e. a PCR multiplex. The combination of the high throughput and cost-effective 2-D microfluidic gene scanner with the principle of the PCR multiplex may enable an extensive parallel gene scanner for mutation detection in large human disease genes, for exploring human genetic variability in population-based studies, and for other purposes. This may facilitate genome typing of human individuals, comprehensive mutation analysis, and other advantages.
Another advantage of the invention is that it enables integration of 2-D microfluidic networks formed in plastic substrates (e.g., using template imprinting, injection molding, laser machining, or a combination of these technologies) with LIFD and mass spectrometry detection for automation, high throughput, reproducibility, robustness, and ultrahigh resolution. These capabilities are advantageous for large-scale proteome analysis and for “differential display” of protein expressions under various physiological conditions.
The microfluidic 2-D PAGE of the present invention may be advantageous for the study of organisms having fully sequenced genomes, and may identify proteins (and their modifications in many cases) as well as provide quantitative measurements of expression levels. Other uses will be apparent.
These and other features and advantages of the invention will be more fully appreciated from the detailed description of the preferred embodiments and the drawings attached hereto. It is also to be understood that both the foregoing general description and the following detailed description are exemplary and not restrictive of the scope of the invention.
According to one embodiment of the invention as illustrated in
According to one embodiment, the first-dimension microchannel 3 may extend in a first direction, while an array of one or more second-dimension microchannels 4 may extend from, or intersect with, the first-dimension microchannel 3 in a second direction. Preferably the second direction is orthogonal to the first direction. The first-dimension microchannel 3 may have a first end 3a and a second end 3b. Similarly, an array of one or more second-dimension microchannels 4 may each have a first end 4a and a second end 4b.
According to one embodiment the first end 4a of the one or more second-dimension microchannels 4 may intersect the first-dimension microchannel 3 at various locations along the length of the first dimension microchannel.
According to one embodiment, as illustrated in
According to one embodiment of the invention, the one or more reservoirs (5-8) may be formed in the first 1 or second 2 substrate, and a plurality of separation electrodes (9, 10, 11, 12) may be provided. A first end (indicated schematically) of the separation electrodes (9-12) may be located in electrical communication with the reservoirs 5-8, respectively. A second end (indicated schematically) of the separation electrodes 9-12 may be attached to one or more high voltage power supplies (V13, V14, V15, V16). One or more of electrodes 9-12 may also be connected to ground potential (e.g., ˜0 Volts) (not shown in the figure).
As illustrated in
In another embodiment, as illustrated in
In some embodiments, microchannels (e.g. 3, 4) may have depth to width ratio of approximately 1:3. Other ratios and dimensions may be used. For example, microchannels with an average depth of 10 μm may have an average width of 30 μm. However, both depth and width preferably range from 5 to 200 μm. For illustrative purpose, the width mentioned herein is from trapezoidal shaped microchannel cross-sections. Other shapes for microchannel cross-sections may be used, for example rectangular, circular, or semi-circular cross-sections. The microchannels (e.g. 3, 4) can be any suitable length. A preferred length ranges from about 1 to about 10 cm. Other lengths may be used. Some embodiments may have other microchannel dimensions for various applications.
In some embodiments, a plastic substrate such as poly(methylmethacrylate) (PMMA) or polycarbonate may be used for fabrication of the microfluidic 2-D apparatus. In one embodiment, a polydimethylsiloxane (PDMS) layer combined with a rigid substrate is used for fabrication of the 2-D microfluidic apparatus. Non-plastic materials such as glass or silica may also be used to fabricate the 2-D microfluidic apparatus of the present invention.
Spacing between the intersections determines the size of the sample plug being introduced into the second dimension microchannel array 4. The extent of resolution loss during the transfer step is mainly dependent upon the spacing and focused protein bandwidth achieved from isoelectric focusing in the first dimension microchannel 3.
According to one embodiment, microchannels (e.g. 3, 4) may be filled with any suitable carrier ampholyte solution for first dimension separation and any gel solution preferably with SDS for second dimension separation of proteins. A preferred voltage for separation of proteins range from 100 V/cm to 1000 V/cm. A high voltage power supply may be attached to a second end of a selected number of the one or more separation electrodes (e.g., electrodes 9-12). Due to the extremely large surface area to volume ratio of microchannels (e.g. 3, 4) for efficient heat dissipation, the application of high electric voltage enables rapid and excellent separation of proteins in the microfluidic network. In some embodiments, microfluidic device of the present invention is used for separating DNA, peptides, and other biological or chemical composites.
According to one aspect of the invention, the 2-D plastic microfluidic device separates protein analytes with ultrahigh resolution based on their differences in isoelectric point and size. As illustrated in FIG. 1., one or more microchannels 3 extending from left to right in the figure and connecting one or more reservoirs 5 and 6 may be employed for performing a non-native isoelectric focusing separation in a first dimension. Once the first dimension separation is complete, the material (e.g. proteins) may be transferred into a microchannel array connecting one or more reservoirs 8 for performing a parallel and high throughput size-dependent separation. The transfer to the second dimension may occur virtually simultaneously in each microchannel of the second dimension array of microchannels 4. In some embodiments, one or more reservoirs 10 (as illustrated in
To monitor the performance of isoelectric focusing in first dimension microchannels 3, proteins may be covalently labeled with a suitable florescent dye and detected by a suitable florescence detector. An example of a fluorescent dye is 5-carboxy fluorescein succinimidyl ester which may be used to label the proteins. Other dyes or labeling techniques may be used. An example of a detector is a Zeiss fluorescence microscope. Other detectors and detection techniques may be used. Because of the large number of amino groups on protein molecules, very small amounts of fluorescein dye is needed. These labeled proteins may be denatured and reduced at approximate concentration of 1 mg/ml for each protein. The proteins may be prepared in a suitable solution (e.g. a solution including urea, dithiothreitol, and Tris-HCl with approximate concentrations of 8M, 100 mM and 0.1 M respectively) with a pH preferably ranging from 4 to 10. The protein solution may be kept under a nitrogen atmosphere for about four hours in room temperature. The denatured and reduced proteins may be desalted using a column preferably by PD-10 column. Eluted proteins may be dried preferably by vacuum and stored at a preferred temperature of about −20° C. These proteins may be reconstituted in the solution containing carrier ampholytes (approximately 2% pharmalyte 3-10) and urea (between 1 and 3 M) for performing non-native isoelectric focusing. Plastic microchannels made out of PDMS substrate are advantageous for isoelectric focusing because they are optically transparent at the wavelengths required for the fluorescence detection of proteins and they provide low fluorescence background. Other materials may be used.
According to one aspect of the invention, two different media are introduced in a 2-D microfluidic network for performing two dimensional separations of proteins. Isoelectric focusing in the first dimension involves the use of carrier ampholytes for the creation of pH gradient in the microchannel. However, size-dependent separation of SDS-protein complexes in the second dimension is based on their differences in electrophoretic mobility inside a polymer sieving matrix.
In one embodiment, a pressure filling approach may be used for introducing two different media into the at least one first dimension microchannel and array of second dimension microchannels respectively. Gel solutions may be introduced into microchannel arrays (e.g., 3, 4) by applying pressure in reservoirs. As illustrated in
In another embodiment, the entire plastic microfluidic network may initially be filled with a polymer gel solution by pressure. The pressure level required for filling the microfluidic network depends upon the cross-sectional dimensions and lengths of the microchannels, in addition to the viscosity of the gel solution. In the case of embodiments where the bonding strength between the top and bottom layers of the device is not sufficient to hold the device together during high-pressure filling, an external force may be applied to hold the layers together during the filling process. The filling of the microfluidic network is followed by removal of the polymer gel in the microchannels connecting reservoirs 5 and 6 as illustrated in
In yet another embodiment, a preferred polymeric membrane, polyvinylidene fluoride (PVDF), sandwiched between the upper and lower microchannels may serve as a hydrodynamic barrier, providing the initial filling of two different separation media in the upper and lower microchannels. As illustrated in
The methods of the present invention for introducing two different media in the same microfluidic device may also be used for other media in two dimensions for separating DNA, peptides, and other chemical and biological composites.
According to one embodiment of the invention illustrated in
Resistive heating of the one or more heating elements 17 may be used to produce the desired temperature gradient. The heating elements may be made from any suitable material. Platinum may, for example, be used as a preferred heating element 17 material for imposing temperature gradient along microchannels. By using platinum heating elements 17, the local temperature may be monitored by measuring changes in resistance. Platinum may be replaced with other less expensive electrode materials with acceptable temperature coefficients of resistance including, for example, thin film gold, metal foil, conductive polymer(s), conductive ink, electrically-conductive wire, or other materials. Other temperature control structures and techniques may be used.
The spatial temperature gradient may vary from about 20-25° C. at the intersection between the first dimension microchannel 3 and the one or more second-dimension microchannel 4, to about 70-90° C. at the second end 4b of the one or more second-dimension microchannels 4. The spatial temperature gradient may be replaced by a temporal temperature gradient where the one or more heating elements 17 induces a constant spatial temperature across the entire length and width of the one or more second-dimension microchannel 4 and the constant spatial temperature is varied with time. The constant spatial temperature may be varied from an initial temperature of about 20-25° C. to a final temperature of about 70-90° C.
In some embodiments, microchannels (e.g. 3, 4) may have depth to width ratio of approximately 1:3. Other ratios and dimensions may be used. For example, microchannels with an average depth of 10 μm may have an average width of 30 μm. However, both depth and width preferably range from 5 to 200 m. For illustrative purpose, the width mentioned herein is from trapezoidal shaped microchannel cross-sections. Other shapes for microchannel cross-sections may be used, for example rectangular, circular, or semi-circular cross-sections. The microchannels (e.g. 3, 4) can be any suitable length. A preferred length ranges from about 1 to about 10 cm. Other lengths may be used. Some embodiments may have other microchannel dimensions for various applications.
The number of microchannels (e.g. 3, 4, 11) and the spacing therebetween, may be application dependent. The spacing between the second dimension microchannels 4 in the array may determine the size of the sample plug being introduced from the first to the second dimensions. The extent of resolution loss during the transfer step is in part dependent upon the spacing and the DNA bandwidth achieved from size-based separation in the first dimension. Minimal resolution loss may be achieved as there may be no mixing during the electrokinetic transfer of DNA fragments. The number second dimension of microchannels in the array may also range from 10 to 1000, or more.
Separation efficiency and resolution of DNA fragments may be dependent only upon the size-sieving polymer characteristics and the applied electric potential. According to one aspect of the invention, a preferred separation media for electrophoresis in microchannels (e.g. 3, 4) is 1× TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM EDTA) containing 2% poly(ethylene oxide) (PEO). It should be noted that microchannels (e.g. 3, 4) may be filled with any other polymeric media for separating DNA, protein, other biomolecules and chemical composites.
According to one embodiment of the invention, a voltage source (V13, V14, V15, V16) may be attached to a second end (indicated schematically) of a selected number of the one or more separation electrodes (indicated schematically). Due to the extremely large surface area to volume ratio of microchannels for efficient heat dissipation, the application of an electric field may enable rapid and excellent separation of DNA fragments in a microfluidic network. A preferred electric field for separating DNA fragments in the present invention range from 100-1000 V/cm, however, other electric field strengths may be used.
According to one embodiment of the invention, as illustrated in
According one aspect of the present invention, focused proteins in the first dimension are simultaneously transferred to the second dimension by hydrodynamic pressure. To fulfill the requirements of a comprehensive 2-D separation system, the two dimensions should be orthogonal, and any separation accomplished by the first dimension should ideally be retained upon transfer to the second dimension. First dimensional microchannels 3 connecting reservoirs 5 and 6 (as illustrated in
In another aspect of the present invention, focused proteins in the first dimension (e.g. 3) may be electrokinetically transferred to the second dimension (e.g. 4) using end reservoirs (e.g. 5, 6, 8). As soon as the focusing is complete in the first separation dimension, the voltage may be turned off and the solution containing catholyte in reservoir 6 (as illustrated
In yet another aspect of the present invention, focused proteins in the first dimension may be electrokinetically transferred to the second dimension using tertiary reservoirs 10 as illustrated in
In some embodiments, electrokinetic transfer method may be performed to transfer DNA, peptides, and other chemical or biological composites from one dimension to another dimension of the gel electrophoresis system. As used herein, “electrokinetic transfer method” includes a method or a system which transfer materials from a channel and/or chamber containing structure in one dimension to similar structures in other dimensions, through the application of electric fields to the materials, thereby causing the transfer of the materials.
According to one embodiment of the invention, as illustrated in
According to another aspect of the invention, one or more intersection control voltages may be applied to the one or more second-dimension separation inlet reservoirs 7 (as illustrated in
According to an embodiment, as depicted in
According to another aspect of the invention, depicted in
According to another aspect of the invention, depicted in
According to another aspect of the invention, depicted in
According to another aspect of the invention, depicted in
According to one embodiment, the one or more intersection control voltages may be applied using a plurality of voltage sources, wherein one voltage source may be connected to the first end of a first resistive element, and a second voltage source may be connected to the second end of the first resistive element to generate a potential gradient along the first resistive element. The resistive element may placed in electrical contact with the one or more second-dimension separation inlet reservoirs such that the intersection control voltage in each reservoir is set by the voltage of the first resistive element at the point of electrical contact. Further, the one or more intersection control voltages may be chosen such that the voltage near the intersection of the one or more first-dimension separation microchannels 3 and the one or more second-dimension separation microchannels 4 (connected to the reservoir at which the intersection control voltage is applied) is slightly different than the voltage within the intersection itself.
A third voltage source may be connected to the first end of a second resistive element, and a fourth voltage source may be connected to the second end of the second resistive element to generate a potential gradient along the second resistive element. The second resistive element may then be placed in electrical contact with the one or more second-dimension separation inlet reservoirs, such that the intersection control voltage in each reservoir is set by the voltage of the second resistive element at the point of electrical contact. The one or more intersection control voltages may be chosen such that the voltage near the intersection of the one or more first-dimension separation microchannels 3 and the one or more second-dimension separation microchannels 4 (connected to the reservoir at which the intersection control voltage is applied) is slightly lower than the voltage within the intersection itself.
According to another aspect of the invention, depicted in
One of the advantages of the present invention is integration of a optical source device and an image capturing device for monitoring the detection of SDS-protein complexes near the end of second dimension microchannel array using non-covalent, environment-sensitive, fluorescent probes.
For example, florescent probes such as SYPRO orange (excitation: 470 nm, emission: 570 nm) or SYPRO red (excitation: 550 nm, emission: 630 nm) may be employed for pre-electrophoretic staining of proteins. As shown in
According one aspect of the present invention, microfluidic 2-D PAGE may be integrated with mass spectrometry employing matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) for integrating protein separation, quantification, identification, and sequencing processes. Electrospray ionization may be integrated into the microfluidic network by extending the second-dimension microchannels to the outer edge of the device to form electrospray tips, or by combining traditional silica capillary electrospray tips into the microfluidic system. The integrated system offers large-scale analysis of proteins and “differential display” proteomics for comparisons of protein expression under various environmental and physiological conditions.
Other embodiments, uses and advantages of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification should be considered exemplary only, and the scope of the invention is accordingly intended to be limited only by the following claims.
This application is: (1) a continuation-in-part of U.S. patent application Ser. No. 10/135,385, filed May 1, 2002, now U.S. Pat. No. 6,929,730, which claims priority to U.S. Provisional Application No. 60/287,801, filed May 1, 2001, each of which is hereby incorporated herein by reference in their entirety; and (2) a continuation-in-part of U.S. patent application Ser. No. 10/135,386, filed May 1, 2002, now U.S. Pat. No. 6,974,526, which claims priority to U.S. Provisional Application No. 60/287,754, filed May 1, 2001, each of which is hereby incorporated herein by reference in their entirety.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant Numbers: R43CA092819, and R43GM062738, awarded by the National Institutes of Health, and Grant Number: DAAH01-02-C-R136, awarded by the Defense Advanced Research Projects Agency.
Number | Name | Date | Kind |
---|---|---|---|
4576702 | Peck et al. | Mar 1986 | A |
4708782 | Andresen et al. | Nov 1987 | A |
5066377 | Rosenbaum et al. | Nov 1991 | A |
5102518 | Doering et al. | Apr 1992 | A |
5131998 | Jorgenson et al. | Jul 1992 | A |
5217591 | Gombocz et al. | Jun 1993 | A |
5240577 | Jorgenson et al. | Aug 1993 | A |
5245185 | Busch et al. | Sep 1993 | A |
5269900 | Jorgenson et al. | Dec 1993 | A |
5275710 | Gombocz et al. | Jan 1994 | A |
5316630 | Dasgupta | May 1994 | A |
5389221 | Jorgenson et al. | Feb 1995 | A |
5496460 | Jorgenson et al. | Mar 1996 | A |
5505831 | Liao et al. | Apr 1996 | A |
5541420 | Kambara | Jul 1996 | A |
5569365 | Rabin et al. | Oct 1996 | A |
5587062 | Togawa et al. | Dec 1996 | A |
5599432 | Manz et al. | Feb 1997 | A |
5635045 | Alam | Jun 1997 | A |
5795720 | Henco et al. | Aug 1998 | A |
5916428 | Kane et al. | Jun 1999 | A |
5957579 | Kopf-Sill et al. | Sep 1999 | A |
6013165 | Wiktorowicz et al. | Jan 2000 | A |
6068752 | Dubrow et al. | May 2000 | A |
6068767 | Garguilo et al. | May 2000 | A |
6167910 | Chow | Jan 2001 | B1 |
6186660 | Kopf-Sill et al. | Feb 2001 | B1 |
6235175 | Dubrow et al. | May 2001 | B1 |
6251343 | Dubrow et al. | Jun 2001 | B1 |
6274089 | Chow et al. | Aug 2001 | B1 |
6358387 | Kopf-Sill et al. | Mar 2002 | B1 |
6406604 | Guzman | Jun 2002 | B1 |
6537432 | Schneider et al. | Mar 2003 | B1 |
6540896 | Manz et al. | Apr 2003 | B1 |
6592735 | Meier et al. | Jul 2003 | B1 |
6776911 | Citterio et al. | Aug 2004 | B2 |
6818112 | Schneider et al. | Nov 2004 | B2 |
6929730 | Lee et al. | Aug 2005 | B2 |
6969452 | He et al. | Nov 2005 | B2 |
6974526 | Lee et al. | Dec 2005 | B2 |
7473532 | Darfler et al. | Jan 2009 | B2 |
20020033336 | Liu et al. | Mar 2002 | A1 |
20020106700 | Foote et al. | Aug 2002 | A1 |
20030013203 | Jedrzejewski et al. | Jan 2003 | A1 |
20030089605 | Timperman | May 2003 | A1 |
20030106797 | Schneider et al. | Jun 2003 | A1 |
20040195099 | Jacobson et al. | Oct 2004 | A1 |
20050155861 | Guzman | Jul 2005 | A1 |
20050217996 | Liu et al. | Oct 2005 | A1 |
20050269267 | Patton et al. | Dec 2005 | A1 |
20060071665 | Blake et al. | Apr 2006 | A1 |
20060083753 | Straub et al. | Apr 2006 | A1 |
20060086611 | Curcio | Apr 2006 | A1 |
20060275801 | Henkin | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
WO 94 28406 | Dec 1994 | WO |
WO 9800231 | Jan 1998 | WO |
WO 0057170 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060054504 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60287801 | May 2001 | US | |
60287754 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10135385 | May 2002 | US |
Child | 11086400 | US | |
Parent | 11086400 | US | |
Child | 11086400 | US | |
Parent | 10135386 | May 2002 | US |
Child | 11086400 | US |