This application is based upon and claims priority under 35 U.S.C. 119 from Taiwan Patent Application No. 106122974 filed on Jul. 10, 2017, which is hereby specifically incorporated herein by this reference thereto.
The present invention relates to a lock mechanism and a key, and relates to an unlocking method.
A conventional lock mechanism comprises a casing, a lock core, and multiple sliders. The casing comprises multiple abutting blocks and multiple springs, and forms an accommodating space. The abutting blocks are arranged in a straight line and are capable of moving in another line. One end of each abutting block is selectively located in the accommodating space and another end of each abutting block is connected to one of the springs, and thereby the abutting blocks are pushed toward the accommodating space. The lock core is rotatably mounted in the accommodating space and forms multiple holes and a key way to be inserted by a key. The holes respectively extend in a moving direction of the abutting blocks, and thus when the ends of the abutting blocks are in the accommodating space, said ends further pass through the holes of the lock core, which makes the lock core non-rotatable. The holes communicate with the key way, and the sliders are respectively movably mounted in the holes. One end of each slider is selectively located in the key way, and another end of each slider is selectively abutted by one of the blocks.
When the key is not inserted in the lock core yet, the sliders are pushed by the abutting blocks and the ends of the sliders are in the key way, and the two ends of each abutting block are in the lock core and in the casing respectively so that the lock core cannot be rotated; when the key is inserted in the key way, the sliders and the abutting blocks are pushed by the key toward the springs, and interfaces of the sliders and the abutting blocks are aligned to interfaces of the casing and the lock core so that the lock core is rotatable.
However, in the aforesaid structure that the abutting blocks are arranged in a line, the lock is easy to be unlocked by someone intentionally even without the right key. Precisely, tolerances during manufacture of the lock are inevitable, so some gaps between the abutting blocks and inner surfaces of the holes are narrower than those of others. If the lock core is rotated when the sliders and the abutting blocks are located in their respective correct positions, the abutting blocks may abut the inner surfaces of the holes and thereby the lock core cannot be rotated, and force is concentrated at the abutting block that forms the smallest gap with respect to the inner surface of the corresponding hole. After said abutting block is pushed to move out of the corresponding hole, the lock core can be rotated slightly. Then, because the remaining abutting blocks are not moved out of the corresponding holes yet, one of the remaining abutting blocks that form the second smallest gap with respect to the inner surface of the corresponding hole abuts the inner surface of the corresponding hole and thus prevents the lock core from rotation. Besides, because the sliders and the abutting blocks in the conventional lock mechanism are only capable of moving in one dimension, in the process of pushing the sliders and the abutting blocks, the interface of the sliders and the abutting blocks is inevitably aligned to the interface of the casing and the lock core. Therefore, the lock mechanism may be unlocked after the aforesaid process is repeated several times.
This unlocking process is well known not only for locksmiths, but also for many people not in the locksmith profession. In other words, such conventional lock mechanism does not provide solid protection since the unlocking method is too accessible.
To overcome the shortcomings, the present invention provides a two-dimensionally driven lock, a key, and an unlocking method thereof to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide a two-dimensionally driven lock that has a movable and rotatable slider so that a recessed portion of the slider is disposed two-dimensionally.
The two-dimensionally driven lock has an outer casing and a lock core. The outer casing forms an accommodating space and a cavity communicating with the accommodating space. The lock core is rotatably mounted through the outer casing and comprises an inner casing, at least one slider, at least one first elastic component, at least one block, and at least one second elastic component. The inner casing is rotatably mounted through the accommodating space of the outer casing and comprises a key way and at least one hole. One end of each one of the at least one hole communicating with the key way. The at least one slider is movably mounted through the at least one hole and is capable of rotating with respect to the corresponding hole about a rotating axis parallel with an extending direction of the corresponding hole. Each one of the at least one slider comprising a slider main body and a positioning portion. The slider main body has a recessed portion. The positioning portion is securely mounted on one end of the slider main body and located in the key way. A sectional shape of the positioning portion is non-circular. The at least one first elastic component is mounted in the inner casing and connected to the at least one slider respectively, and thereby the slider tends to move toward the key way. The at least one block is movably mounted through the inner casing. Each one of the at least one block comprises a block main body and at least one protrusion portion. A portion of the block main body is selectively received in the cavity of the outer casing. The at least one protrusion portion selectively received in the recessed portion of one of the at least one slider. The at least one second elastic component is mounted in the inner casing and connected with the at least one block, and thereby the at least one block tendes to move toward the cavity of the outer casing.
To achieve the aforementioned objective, a key matching to the aforesaid two-dimensionally driven lock is provided and has at least one positioning dimple. The at least one positioning dimple corresponds to the positioning portion of the at least one slider of said two-dimensionally driven lock in location. A sectional shape and a sectional area of each one of the at least one positioning dimple are identical to those of the positioning portion of the at least one slider. When the key is inserted in the key way, the positioning portion of each one of the at least one slider is received in the corresponding positioning dimple, and the at least one protrusion portion of the at least one block of said two-dimensionally driven lock faces to the at least one recessed portion of the at least one slider.
To achieve the aforementioned objective, an unlocking method is provided. The unlocking method starting with a recessed portion of at least one slider of a lock core of a lock dislocated with respect to at least one protrusion portion of at least one block of the lock core, thereby preventing the at least one protrusion portion from moving into the recessed portion; and the at least one block engaged in a cavity of an outer casing of the lock, thereby making the lock core non-rotatable with respect to the outer casing. The unlocking method includes the following steps: insert a key in the lock core and align at least one positioning dimple of the key to a positioning portion of the at least one slider, thereby the key drives the at least one slider to move and rotate through the at least one positioning dimple matching to the positioning portion of the at least one slider, and the recessed portion of the at least one slider faces to the at least one protrusion portion of the at least one block, thereby making the at least one protrusion portion capable of moving into the recessed portion of the at least one slider and the at least one block capable of moving out of the cavity of the outer casing. And then, rotate the key to drive the lock core to rotate with respect to the outer casing with the at least one block moving out of the cavity of the outer casing and the at least one protrusion portion moving into the recessed portion of the at least one slider.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
Then please refer to
Then please refer to
The first elastic components 23 are mounted in the inner casing 21 and connected with the sliders 22 respectively, and thereby the slider 22 tends to move toward the key way 211. In other words, the positioning portion 222 of the slider main body 221 remains in the key way 211.
The please refer to
Then please refer to
In addition, with the sliders 22 capable of moving parallel to their rotating axis and rotating about their rotating axis, after the sliders 22 are moved and/or rotated, the recessed portions 2210 of the slider 22 can face to or be dislocated from the protrusion portions 242. Therefore, a location of each recessed portion 2210 on the corresponding slider main body 221 is at any site that can face to the protrusion portion 242 during moving and rotation of the slider 22. In other words, a preferred site for arranging the recessed portion 2210 is various in a two-dimension scope.
Then please refer to
In another embodiment, the positioning dimple 300 may be formed on a surface of the key 30, said surface being parallel to a thickness direction of the key 30, and each positioning dimple 300 only has a front wall and a rear wall and the front wall and the rear wall are inclined corresponding to the positioning portions 222 of the sliders 22.
In this embodiment, centers of the positioning dimples 300 are arranged in a line parallel to the extending direction of the key 30. However, in another embodiment, the centers of the positioning dimples 300 may not be arranged in a line.
Then refer to
Then, insert the key. After the key 30 is inserted, the positioning dimples 300 respectively correspond to the positioning portions 222 of the slider 22, and thus the key 30 drives the sliders 22 to move and rotate through the positioning dimples 300 matching the positioning portions 222, and thereby the recessed portions 2210 of the sliders 22 face to the protrusion portion 242 of the block 24. Meanwhile, the protrusion portions 242 are capable of moving into the recessed portions 2210 of the sliders 22 and the block 24 is capable of moving out of the cavity 12 of the outer casing 10. However, the protrusion portions 242 do not automatically move into the recessed portion 2210 so that the block 24 also does not automatically move out of the cavity 12.
Precisely, with the key 30 inserted into the key way 211, the positioning portions 222 of the sliders 22 can rotate according to the positioning dimples 300 of the key 30 and move according to depths of the positioning dimples 300, so that the recessed portions 2210 of the sliders 22 can face to the protrusion portions 242 of the block 24. If all of the recessed portions 2210 respectively face to the protrusion portions 242 and thereby the protrusion portions 242 can be moved into the recessed portions 2210, the block 24 can be moved toward the slider 22 and out of the cavity 12 of the outer casing 10.
Then, turn the key. When the key 30 is turned, because the two inclined surfaces of the block 24 aside the side of the block 24 received in the cavity 12 serve as guiding surfaces, the two inclined surfaces of the block 24 may push the block 24 to move out of the cavity 12 and thus the protrusion portions 242 move into the recessed portions 2210.
On the other hand, when the key 30 is turned back to the original position and pulled out of the key way 211, the sliders 22 may be pushed back by the first elastic components 23 toward the key way 211. Precisely, a shock is generated while the key 30 is being pulled out and the sliders 22 are being pushed back toward the key way 211, and the shock may make the slider 22 rotate randomly, so that the two-dimensionally driven lock returns back to the locked state.
The unlocking method is not limited to be applied on the two-dimensionally driven lock and the key 30, as long as a lock has an outer casing and a lock core, and the outer casing comprises a cavity, the lock core comprises at least one movable and rotatable slider and a block that is capable of engaging the cavity of the outer casing and moving in or out of a recessed portion of the slider.
With aforesaid structures, different keys 30 may have the positioning dimples 300 in amounts other than those aforementioned, and the positioning dimples 300 are different from each other in angle and depth. Thus, the key 30 may have more different codes for unlocking. Corresponding to the positioning dimples 300 of the key 30, the lock core 20 may have the sliders 22 also in another amount, and the recessed portions 2210 may be disposed at different sites on both an axial scope and a circumferential scope of the slider main body 221, so that the locations of the recessed portions 2210 vary in two dimensions.
Precisely, if a stroke of the slider 22 in the hole 212 is two millimeters and the protrusion portions 242 cannot be moved into the recessed portions 2210 if the recessed portions 2210 are dislocated more than zero point two millimeters, the locations of the recessed portions 2210 may have ten variations in moving directions of the sliders 22. Similarly, if a rotating scope of the slider 22 is 50 degrees and the protrusion portions 242 cannot be moved into the recessed portions 2210 if the recessed portion 2210 is dislocated more than 5 degrees, the locations of the recessed portions 2210 may have ten variations in rotating directions of the sliders 22. Therefore, the location of the recessed portions 2210 can vary in the moving direction and the rotating direction of the sliders 22, so one slider 22 may generate one hundred variations of locations of the recessed portion 2210, and three sliders 22 may generate one million location variations, four sliders 22 may generate one hundred million location variations, etc. The length of the stroke, the angle of the rotating scope, and intervals are exemplary and are not limited thereto.
On the other hand, someone who does not have the right key 30 cannot use the conventional method to make the slider 22 having the smallest tolerance abut the outer casing 10 and thus push the sliders 22 to an unlocked position one by one. Precisely, if the right key 30 is not inserted in the key way 211 yet, even if the lock core 20 is turned, the outer casing 10 and the lock core 20 may push each other, and the push force is exerted on the inclined surface of the block 24, thereby making the block 24 move toward the sliders 22, and thus one of the protrusion portions 242 of the block 24 abuts the outer surface of the corresponding slider main body 221 with the smallest tolerance. To make the recessed portion 2210 of said slider 22 face the protrusion portion 242, the protrusion portion 242 has to be adjusted to a correct position in two dimensions. Therefore, without special equipment for adjusting the position and the angle of the sliders 22 mechanically and systematically, manual operation is not capable of checking all the positions and angles, thereby making unlocking very difficult.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
106122974 | Jul 2017 | TW | national |