1. Field of the Invention
The present invention generally relates to power supply systems, and more particularly, to a two level current limiting power supply system capable of reducing thermal stress during overload conditions.
2. Background Information
Single level current limiting power supplies are prone to dissipate excessive power during overload conditions. The concept of power dissipation can be understood from the following example. Assume that a power supply element (e.g., regulator, etc.) typically has a 2 volt drop across it during a normal operating mode. In this example, if the current flowing through the element is 500 milliamps, 1 watt of power (i.e., 2 volts*500 milliamps) must be dissipated by the element. A more serious condition may occur, for example, with a shorted power supply output. In this example, assume that the power supply element (e.g., regulator, etc.) has a 20 volt drop across it when the power supply output is shorted. In this example, if the current flowing through the element is 500 milliamps, 10 watts of power (i.e., 20 volts * 500 milliamps) must be dissipated by element. In the foregoing examples, the risk of thermal stress damage to elements of the power supply may increase as a result of the power dissipation.
One way to address the potential problems associated with excessive power dissipation is to simply build a power supply system with higher current handling capability. However, the problem with increasing the current handling capability of the power supply system is the resulting increase in cost, which may be unacceptable, particularly with cost sensitive applications. Accordingly, it is desirable to create a power supply system that is capable of reducing thermal stress during overload conditions, but that does not add significant cost to the design.
In accordance with an aspect of the present invention, an apparatus for protecting a power supply is disclosed. According to an exemplary embodiment, the apparatus comprises first means for measuring a current supplied to a load; and second means for disabling the current to the load for a first disable period if the current exceeds a first threshold for a first test period, and for disabling the current to the load for a second disable period if the current exceeds a second threshold for a second test period.
In accordance with another aspect of the present invention, a method for protecting a power supply is disclosed. According to an exemplary embodiment, the method comprises steps of measuring a current supplied to a load; disabling the current to the load for a first disable period if the current exceeds a first threshold for a first test period; and disabling the current to the load for a second disable period if the current exceeds a second threshold for a second test period.
In accordance with yet another aspect of the present invention, a power supply protection apparatus is disclosed. According to an exemplary embodiment, the power supply protection apparatus comprises a measurement device for measuring a current supplied to a load; and a processor for disabling the current to the load for a first disable period if the current exceeds a first threshold for a first test period, and for disabling the current to the load for a second disable period if the current exceeds a second threshold for a second test period.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
The exemplifications set out herein illustrate preferred embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
According to an exemplary embodiment, power supply system 100 is employed in a satellite receiver. According to this exemplary embodiment, power supply system 100 may be embodied within an electronic device such as a set top box, and the load referenced in
With power supply system 100 of
According to principles of the present invention, power supply system 100 uses a two level current limiting technique which reduces thermal stress to regulator 20 during current overload conditions. According to an exemplary embodiment, power supply system 100 employs two current thresholds of 500 and 700 milliamps. If the current flowing through regulator 20 to the load is less than 500 milliamps, power supply system 100 is in a normal operating mode. However, if the current flowing through regulator 20 to the load reaches or exceeds 500 milliamps for a first test period (e.g., 1 second, etc.), current control circuit 30 detects this condition and provides a control signal C to disable (i.e., turn off) regulator 20 for a first disable period (e.g., 1 second, etc.). Moreover, if the current flowing through regulator 20 to the load exceeds 700 milliamps for a second test period (e.g., 35 milliseconds, etc.), current control circuit 30 detects this condition and provides control signal C to disable regulator 20 for a second disable period (e.g., 1.25 seconds, etc.). By disabling regulator 20 in this manner, the present invention advantageously reduces potential thermal stress damage to the elements of regulator 20.
Referring to
In
According to an exemplary embodiment, comparator 26 provides a first detection signal A in a logic high state to processor 28 if the current provided to the load equals or exceeds a first threshold of 500 milliamps. First detection signal A is in a logic low state if the current provided to the load is less than the first threshold of 500 milliamps. Also according to this exemplary embodiment, comparator 24 provides a second detection signal B in a logic high state to processor 28 if the current provided to the load exceeds a second threshold of 700 milliamps. Second detection signal B is in a logic low state if the current provided to the load is less than or equal to the second threshold of 700 milliamps.
Processor 28 is operative to control the current provided to the load in response to the first and second detection signals A and B provided from comparators 26 and 24, respectively. According to the exemplary embodiment described herein, if the current flowing through regulator 20 to the load is less than 500 milliamps, power supply system 100 is in a normal operating mode. However, if the current flowing through regulator 20 to the load reaches or exceeds 500 milliamps for a first test period (e.g., 1 second, etc.), processor 28 detects this condition in response to the first detection signal A from comparator 26 being in a logic high state, and provides control signal C to disable (i.e., turn off) regulator 20 for a first disable period (e.g., 1 second, etc.). Moreover, if the current flowing through regulator 20 to the load exceeds 700 milliamps for a second test period (e.g., 35 milliseconds, etc.), processor 28 detects this condition in response to the second detection signal B from comparator 24 being in a logic high state, and provides control signal C to disable regulator 20 for a second disable period (e.g., 1.25 seconds, etc.). By disabling regulator 20 in this manner, the present invention advantageously reduces potential thermal stress damage to the elements of regulator 20. It is noted that the specific current thresholds, test periods and disable periods referred to herein are exemplary only, and that other current thresholds, test periods and disable periods may also be employed as a matter of design choice in accordance with principles of the present invention.
Referring to
Referring to
At step 405, power supply system 100 is in a normal operating mode. At step 410, a current test is performed to measure the magnitude of the current being provided to the load (e.g., LNB). According to an exemplary embodiment, current control circuit 30 generates a voltage having a magnitude that corresponds to the magnitude of the current provided to the load (e.g., LNB). According to this exemplary embodiment, voltage source V2, resistors R6 to R9, transistor Q3 and operational amplifier 22 of current 30 control circuit 30 operate as a current-to-voltage transducer which produces a voltage having a magnitude that corresponds to the magnitude of the current provided to the load. Comparators 24 and 26 receive the output voltage provided from this current-to-voltage transducer and detect if the current provided to the load (which corresponds to the output voltage of the current-to-voltage transducer) reaches certain predetermined thresholds. According to an exemplary embodiment, comparator 26 provides first detection signal A in a logic high state to processor 28 if the current provided to the load equals or exceeds a first threshold of 500 milliamps, and comparator 24 provides second detection signal B in a logic high state to processor 28 if the current provided to the load exceeds a second threshold of 700 milliamps. Accordingly, processor 28 determines the magnitude of the current provided to the load based on the logic states of the first and second detection signals A and B.
If the current test of step 410 indicates that the current is less than 500 milliamps, process flow advances to step 415 where processor 28 resets first and second internal timers T1 and T2 to predetermined initial values (e.g., zero). As previously indicated above, these first and second timers T1 and T2 measure first and second test periods, respectively. From step 415, process flow loops back to step 405 where the normal operating mode occurs.
If the current test of step 410 indicates that the current is greater than or equal to 500 milliamps but less than or equal to 700 milliamps, process flow advances to step 420 where processor 28 increments its first timer T1. From step 420, process flow advances to step 425 where processor 28 determines whether first timer T1 has elapsed. According to an exemplary embodiment, first timer T1 elapses when it reaches 1 second, which corresponds to the exemplary first test period. If first timer T1 has not elapsed at step 425, process flow loops back to step 410 where the current test is performed again.
If the current test of step 410 indicates that the current is greater than 700 milliamps, process flow advances to step 430 where processor 28 increments its second timer T2. From step 430, process flow advances to step 435 where processor 28 determines whether second timer T2 has elapsed. According to an exemplary embodiment, second timer T2 elapses when it reaches 35 milliseconds, which corresponds to the exemplary second test period. If second timer T2 has not elapsed at step 435, process flow loops back to step 410 where the current test is performed again.
If processor 28 determines that first timer T1 has elapsed at step 425 or that second timer T2 has elapsed at step 435, process flow advances to step 440 where processor 28 disables the current to the load. According to an exemplary embodiment, processor 28 disables the current to the load by outputting control signal C (see
As described herein, the present invention provides a two level current limiting power supply system capable of reducing thermal stress during current overload conditions. It is again noted that a preferred embodiment of the present invention has been described herein with reference to specific current thresholds, test periods and disable periods which are exemplary only, and are not intended to limit the present invention in any manner. Those skilled in the art will recognize that other current thresholds, test periods and disable periods may also be employed as a matter of design choice. The present invention may be applicable to various types of applications that employ a power supply system. While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application claims priority to and all benefits accruing from a provisional application filed in the United States Patent and Trademark Office on Feb. 2, 2006, and there assigned Ser. No. 60/764581.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/045605 | 11/28/2006 | WO | 00 | 7/30/2008 |
Number | Date | Country | |
---|---|---|---|
60764581 | Feb 2006 | US |