1. Field of the Invention
The present disclosure relates to uninterruptible power supply systems. More specifically, the disclosure relates to methods and apparatus for detecting irregularities in an electrical power source for which the uninterruptible power supply is a backup, such as for a three-phase alternating current public power grid.
2. Description of the Related Art
Electric power converter systems are used to transform and/or condition electrical power in a variety of applications. For example, electrical power converter systems may transform AC power from a power grid to a form suitable for a standalone application (e.g., powering an electric motor, lights, electric heater, household or commercial equipment, telecommunications equipment, computing equipment, uninterruptible power supply (hereinafter, occasionally “UPS”)). UPS systems have become extremely important as backup power supplies for use by hospitals, financial institutions, industrial sites and the like during interruptions of the public three-phase power supply grid. Increasingly, domestic home owners also rely on UPS systems to supplement and/or replace power from the public power grid during grid failures.
UPS systems typically incorporate some type of electrical power converter system. An electrical power converter system may comprise one or more subsystems such as an DC/AC inverter, DC/DC converter, and/or AC/DC rectifier. Typically, electrical power converter systems will include additional circuitry and/or programs for controlling the various subsystems; and for performing switching, filtering, noise and transient suppression, and device protection.
By way of example and historical explanation, converter systems initially were purpose-built for specific applications. One early type of power converter was specifically designed for inverting direct current, constant voltage sources (e.g., batteries) to alternating current outputs (e.g., for operation of AC motors). Converters of this type are termed “inverters” and they have been in the simple form of transformers interconnecting a DC power supply with a plurality of logic control switches to generate the necessary alternating current waveform. A rectifier is another type of power converter for converting alternating current to direct current. Rectifiers have proven themselves especially useful for adapting household 110 volt alternating current to 12-volt direct current for operation of battery-powered appliances. Devices of this type have been as simple as a step-down transformer connected to a diode bridge and a smoothing capacitor for full-wave rectification. U.S. Pat. No. 6,021,052 to Unger et al. entitled “DC/AC Power Converter,” issued on Feb. 1, 2000, disclosed a more sophisticated implementation of an AC to DC rectifier, including discrete components (both analog and digital) for converting direct current power to alternating current power, suitable for driving an AC load which is otherwise in series with an AC power supply. Separately, direct current to direct current (hereinafter occasionally “DC-DC”) converters have been provided for conditioning direct current power from a variable power source (e.g., a wind-driven direct current motor, photovoltaic panel or the like) for charging a battery or array of batteries.
So-called uninterruptible power supplies have been developed which permit power to be converted from a direct current power supply to a three-phase AC load in the event of a failure of the AC grid, and for recharging the DC power supply from the AC grid through the same apparatus when the AC grid is not in a failure mode. The UPS device disclosed by Unger et al. is capable of adapting to a variety of DC power sources by converting the variable DC input to a desired DC voltage on a DC bus. A separate system then converts the now regulated DC voltage on the DC bus into AC power for interfacing with an AC source (e.g., the AC power grid) or upon operation of a transfer switch, an AC load (such as a motor) in the event of a grid failure. Nevertheless, as best understood, the device and topology disclosed by Unger et al. is not readily modified for intelligent detection of electrical power source irregularities (e.g., a public power grid failure). Attention is directed to column 40, lines 39-50 of Unger et al., which appears to disclose that various subsystems of the device disclosed therein may be shut off when the AC source is unable to supply power such that the device disclosed by Unger et al. may act as an uninterruptible power supply. Furthermore, Unger et al. fail to disclose any means for automatically detecting either general or specific irregularities in the public power grid, or for automatically actuating uninterruptible power supply systems so as to disconnect the AC load from the AC source, and for connecting the AC load to the DC/AC converter.
U.S. Pat. No. 5,684,686 to Reddy entitled “Boost-Interrupt Backed-Up Uninterruptible Power Supply,” issued on Nov. 4, 1997, discloses a more sophisticated uninterruptible power supply for use with an alternating current, two-phase power main, such as household electrical power service. Reddy discloses at column 7, lines 1-14 that a microprocessor in combination with corresponding analog and digital signal conditioning circuitry monitors various performance parameters for the purpose of detecting a failure. Without further explanation, Reddy states that at the onset of a failure, the microprocessor controller actuates a relay 84 to supply power to an output load 14 from the uninterruptible power supply 10. However, Reddy fails to disclose any specific logic for detecting a failure, nor for defining a failure. Furthermore, the system disclosed by Reddy appears to only provide two modes of operation: a first mode in which all of the power to the load is supplied by the two-phase public power system; or, a second mode in which all of the power to the load is supplied by the uninterruptible power supply system. Those of ordinary skill in the art are aware that irregularities in an electrical power source (whether the public power grid or an on-site diesel engine/generator combination) are not of a single type. Although it is known that the public power system can fail in its entirety (e.g., a blackout), a variety of other modes of failure are also possible. It is known, for example, that the public power grid can brownout, in which three-phase alternating power is delivered at a voltage magnitude less than standard, but nevertheless non-zero in magnitude. Furthermore, power irregularities (particularly from diesel engine/generator systems) may provide three-phase alternating current power of appropriate voltage magnitude, but in an incorrect phase relationship, or comprising a single phase operating at an improper frequency. Finally, any of the above power source irregularities may be only transitory in nature, lasting only a few seconds, or even a fraction of a second. Clearly, human intervention will not suffice for manually, electrically connecting and disconnecting an uninterruptible power supply to a load during such transient defects. Nevertheless, certain loads (various institutions which rely heavily on computer data processing, such as financial institutions) have little tolerance for even temporary, transient faults in their power supply.
Thus, a need exists for methods and apparatus applicable to uninterruptible power supplies which can distinguish between various different types of power source irregularities in terms of quality, magnitude, and duration.
A further need exists for methods and apparatus applicable to uninterruptible power supply systems for intelligently utilizing backup power from a direct current power supply for application to a load connected to the uninterruptible power supply according to the quality, magnitude, and duration of the irregularity in the electrical power source.
In one aspect, a method for responding to electrical power source irregularities in an uninterruptible power supply system utilizing a rechargeable DC power supply as back up power comprises providing an uninterruptible power supply system comprising a three phase AC source converter connectable to a three phase AC power source and a three phase AC load converter connectable to a three phase load, wherein the converters are interconnected by a DC bus; monitoring DC bus voltage on the DC bus; establishing a first DC bus voltage threshold indicative of a first power source irregularity and a second DC bus voltage threshold indicative of a second and distinct power source irregularity, wherein the first threshold is greater than the second threshold; comparing the DC bus voltage to the first and second thresholds; commuting electrical power from both the power source and from the DC power supply to the DC bus when the DC bus voltage is intermediate the first and second thresholds; and, conversely commuting electrical power only from the DC power supply to the DC bus when the DC bus voltage is less than the second threshold, and disabling the source converter.
In another aspect, an apparatus for responding to electrical power source irregularities in an uninterruptible power supply system comprising a rechargeable DC power supply interconnected to a DC bus comprises an uninterruptible power supply system comprising a three phase AC source converter connectable to a three phase AC power source and a three phase AC load converter connectable to a three phase load, wherein the converters are interconnected by a DC bus; means for monitoring DC bus voltage on the DC bus; establishing means for establishing a first DC bus voltage threshold indicative of a first power source irregularity and a second DC bus voltage threshold indicative of a second and distinct power source irregularity, wherein the first threshold is greater than the second threshold; comparing means for comparing the DC bus voltage to the first and second thresholds; and commuting means for commuting electrical power from both the power source and from the DC power supply to the DC bus when the DC bus voltage is intermediate the first and second thresholds, and for conversely commuting electrical power only from the DC power supply to the DC bus when the DC bus voltage is less than the second threshold and for disabling the source converter.
In a further aspect, a method for responding to electrical power source irregularities in an uninterruptible power supply system comprises providing an uninterruptible power supply system comprising an AC source converter connectable to an AC power source and an AC load converter connectable to a load, wherein the converters are interconnected by a DC bus; interconnecting a rechargeable DC power supply to the DC bus; monitoring DC bus voltage on the DC bus; establishing a first DC bus voltage threshold indicative of a first power source irregularity and a second DC bus voltage threshold indicative of a second and distinct power source irregularity, wherein the first threshold is greater than the second threshold; comparing the DC bus voltage to the first and second thresholds; commuting electrical power from both the power source and from the DC power supply to the DC bus when the DC bus voltage is intermediate the first and second thresholds; and, conversely commuting electrical power only from the DC power supply to the DC bus when the DC bus voltage is less than the second threshold, and disabling the source converter.
In still a further aspect, an apparatus for responding to electrical power source irregularities in an uninterruptible power supply system comprising a rechargeable DC power supply interconnected to a DC bus comprises an uninterruptible power supply system comprising a three phase AC source converter connectable to a three phase AC power source and a three phase AC load converter connectable to a three phase load, wherein the converters are interconnected by a DC bus; a number of voltage sensors coupled to sense DC bus voltage on the DC bus; a controller configured to compare the DC bus voltage to a first DC bus voltage threshold indicative of a first power source irregularity and a second DC bus voltage threshold indicative of a second and distinct power source irregularity, wherein the first threshold is greater than the second threshold; and further configured to provide control signals to at least one of the three phase AC source converter and the three phase AC load converter to commutate electrical power from both the power source and from the DC power supply to the DC bus when the DC bus voltage is intermediate the first and second thresholds, and for conversely commuting electrical power only from the DC power supply to the DC bus when the DC bus voltage is less than the second threshold and for disabling the source converter.
One embodiment of a UPS system employing the principles of the present disclosure is generally indicated at reference numeral 10 in
In one aspect, the present disclosure teaches a method and apparatus applicable to uninterruptible power supplies which can distinguish between various different types of power source irregularities in terms of quality, magnitude, and duration.
In another aspect, the present disclosure teaches methods and apparatus applicable to uninterruptible power supply systems for intelligently utilizing backup power from a direct current power supply for application to a load connected to the uninterruptible power supply according to the quality, magnitude, and duration of the irregularity in the electrical power source.
In still a further aspect, the present disclosure teaches a method for responding to electrical power source irregularities in an uninterruptible power supply system by providing a source converter connectible to an electrical power source (e.g., the public power grid) and a load converter connectible to a load, wherein the converters are interconnected by a DC bus. A rechargeable DC power supply is connected to the DC bus, and voltage on the DC bus is monitored. First and second DC bus voltage thresholds are established wherein the first threshold is indicative of a first power source irregularity, and the second threshold is indicative of a second and distinct power source irregularity. Instantaneous DC bus voltage which is between the first and second thresholds may be indicative of a transient power source irregularity, whereas DC bus voltage below the second threshold may be indicative of a nontransitory power supply failure. The monitored DC bus voltage is compared to the first and second thresholds. If the DC bus voltage is intermediate the first and second thresholds, electrical power both from the electrical power source experiencing the irregularity and power from the DC power supply are combined to satisfy the requirements of the load and are supplied to the load converter. Conversely, if the DC bus voltage is less in the second threshold, the source converter is disabled (thus isolating the system from the power source irregularity) and only power from the DC power supply is provided to the DC bus for subsequent conversion by the load converter for application to the load.
In one or more embodiments, power source voltage and current parameters for each and any phase on an input side of the source converter are monitored. Predetermined quality criteria for acceptable power source quality are established and the monitored power source parameters are compared to the predetermined quality criteria. If the power source quality fails to meet the predetermined quality criteria, a nontransient power source failure is indicated, and electrical power is commuted only from the DC power supply to the DC bus for conversion by the load converter and application to the load.
In any of the above events, instantaneous load voltage and current parameters for each and any phase on an output side of the load converter may also be monitored. A load power demand value may be calculated from these instantaneous parameters, and when a transient power supply irregularity is indicated, a command signal may be generated and sent to the DC power supply, which is indicative of additional current needed by the load to supplant power lost from the AC power source due to the irregularity.
The uninterruptible power supply system 10 is useful for connecting a three-phase load 12 (e.g., a hospital emergency power main) to a three-phase power source 14 such as the public power system. The uninterruptible power supply system 10 advantageously utilizes a power converter assembly generally indicated at reference numeral 16 and shown in greater detail in
Each converter 18, 20 comprises three-phase input/outputs 28, 30, 32 and 36, 38, 40 associated with three phases φA, φB, and φC. Each converter has the ability to accept three-phase alternating current signals and to rectify the same for application to the DC bus conductors 22, 24. Such rectification may be passive (i.e., full-wave rectification at the magnitude of the input voltage) or active wherein the resulting DC signal has a voltage in excess of the alternating current input amplitude provided that the power converter is associated with a conventional inductor (not shown) with respect to each phase.
A power converter assembly 16 of the type shown in
It is sufficient for the purposes of this disclosure, and with reference to
The controllers 74, 82 communicate with one another through an internal control area network, an interface terminal block board, and an interface unit (all conventional and not shown) so that the activation of the transistor gates can be coordinated and operated according to a preprogrammed sequence in a manner well known to those of ordinary skill in the art. Briefly stated, whenever the gates of the transistors associated with either of the first or second converter 18, 20 are deactivated, the converters act as a full-wave rectifying diode bridge providing passive rectification of three-phase power which might appear on φA, φB, and φC. When the gates are activated according to a preprogrammed pulse width modulation (PWM) sequence, three-phase alternating current signals which might appear on φA, φB, and φC can be boost rectified (sometimes termed active rectification) to a larger magnitude direct current voltage on the DC bus 22, 24, than the magnitude of the alternating current input signal. Finally, the gates of the transistors of either first or second controller 18, 20 can be operated such that DC power appearing across the DC bus conductors 22, 24 can be converted into three-phase, alternating current voltage on any of the input/outputs 28, 30, 32 or 36, 38, 40 again using pulse width modulation under instructions from the first and second controller 74, 82. It is to be understood that each of these modes of operation are not necessarily used when the power converter assembly 16 is adapted for use with respect to a specific application as opposed to a more generic application such as the alternating current power source 14 and load 12. A conventional Delta-Y isolation transformer 86 preferably interconnects the load inverter 20 to the load 12.
Those of ordinary skill in the art will appreciate that the symmetrical arrangement of the first and second power converters 18, 20 on each side of the DC bus provides conditioned, regulated DC voltage to be drawn from the DC bus, or supplied to the DC bus from a variety of AC sources, to a variety of AC loads (e.g., from the public power grid to an emergency power main for a financial institution or hospital).
With respect to the embodiment shown in
The UPS system 10 thus has the ability to supply the load 12 with power (through the DC bus) from either the power source 14 or the DC power supplies 90, 92, or both, depending on the severity and quality of any irregularities which are detected in the electrical power source 14. In order to monitor those irregularities, the DC bus is provided with a voltage sensor 100, and the inputs/outputs 28, 30 and 32 of the source rectifier 18 are provided with current sensors 110, 112 and 114 associated with each phase φA, φB, and φC. Voltage is also monitored with respect to each phase of the source 14 input and is communicated to the source controller 74 as well as to a battery and DC/DC controller 116. Such communications preferably occur through the control area network bus 118 as well as digital and/or analog input/outputs 120.
With specific reference to
During a discharge event, in which the system 10 indicates a transient irregularity in the power source 14, power from both the power source 14 and the batteries 90, 92 are supplied to the DC bus to restore the DC bus voltage to approximately 750 volts. In order to achieve this result, the current demanded by the load 12 must be calculated so as to instruct the DC/DC converters 94, 96 as to how much power (i.e., voltage and current) should be supplied to the DC bus based on the power required by the load 12.
Specifically with reference to
With reference to
As best seen in
It is to be understood that in the event of either a transitory, “discharge event” in which power supplied to the load 12 both by the battery 92 and the source 14, or UPS event in which case power is supplied to the load 12 only by the battery 92 and the system is isolated from the source 14, only the first in the series of DC/DC converter-battery assemblies are utilized until the charge from that assembly is exhausted. The system 10 then selects the next DC/DC converter 96/battery 94 combination to supply power to the DC bus until it is exhausted, or the discharge/UPS event terminates. As shown in
It will be apparent to those of ordinary skill in the art, upon reviewing the above disclosure, that other embodiments and variations are contemplated. By way of example, not limitation, those of ordinary skill in the art will appreciate that the logical steps described in
From the foregoing it will be appreciated that, although specific embodiments of the present systems and methods have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Thus, the invention is not to be limited by the above disclosure, but is to be determined in scope by the claims which follow.