TWO-LEVEL WATER FLUSHING DEVICE FOR TOILETS

Information

  • Patent Application
  • 20150225935
  • Publication Number
    20150225935
  • Date Filed
    September 09, 2013
    11 years ago
  • Date Published
    August 13, 2015
    9 years ago
Abstract
The invention relates to a two-level water flushing device for toilets (10), which allows the user to easily select between either a partial flush for liquid waste or a full flush for solid waste. The device (10) can be easily installed without requiring the toilet cistern (11) to be modified in any way. The device consists of five main parts: a modified overflow pipe (15), a full flush valve (30) mounted on the water flow casing (15B) of the modified overflow pipe (15), an adjustable height pipe nipple (45), a partial flush valve (55), and a pair of flush handles (65 and 70). In order to perform a partial flush, the partial flush handle (70) is pressed and, in order to perform a full flush, the full flush handle (65) is pressed.
Description
1. FIELD OF THE ART

The invention is related to the manufacture of a mechanical hydraulic device for two-level water flush in toilets, dedicated to improve performance in saving water in toilets.


2. PREVIOUS TECHNOLOGY

A toilet is a device that is used for human to attendee physiological needs of disposal liquids and solids waste generated by the body. So its use and scope is widespread in places, such as:

    • Home
    • Teaching center (Schools, Colleges, Universities, etc.)
    • Business
    • Industries and others.


The main parts of a standard toilet are:

    • Water storage cistern,
    • Toilet bowl including siphon,
    • Water filling device, and
    • Water flush device


The water filling device includes:

    • Water inlet valve,
    • Float ball, and
    • Bolts, nuts, washers, and others.


The water flush device includes:

    • Flush handle,
    • Lever bar,
    • Chain or rope lifts,
    • Flush valve which includes frog or pear float,
    • Overflow pipe,
    • Bolts, nuts, washers, and others.


Pushing the flush handle, the wastes are brought to the public sewer system. In these toilets for each actuation of the flush handle a release of all content of water in the cistern is done even if the wastes in the toilet bowl are only liquids wastes.


The materials used in their manufacture are ceramics, plastic, metals, and rubber.


Operation

Pushing the flush handle makes leverage on the lever bar that creates a counterclockwise torque which causes the opening of the flush valve, allowing water flush from the cistern to the toilet bowl.


Performed the water flush to the toilet bowl, the flush valve closes by gravity, while the float ball is in its lowest point, and the water inlet valve is open allowing the ingress of water into the cistern. As the water level rises in the cistern the float ball is elevated, until leverage effect on the water inlet valve closes water inlet, leaving the toilet ready again for new water flush. The overflow pipe prevents overflowing water in the cistern by a failure in the water inlet valve or the float ball, causing the water to go to the toilet bowl and then to the public sewer.


Technical Disadvantage

The majority of these toilets, the water flushing volume in the cistern is set by adjusting the length of the rod or arm of the float ball, so when operating the single flush handle a same volume of water is flushing to the toilet bowl in each flush operation and the flush is all the water content in the cistern. Reason why it does not give option to user to makes saving water by carrying out a selective flush, in other words, a partial flush for liquid waste and a full flush for solid waste.


Not allowing to the user to select between a partial flush and a full flush, this system uses excessive and unnecessary volumes of water in majority of cases, so the need for liquid waste disposal is more frequent than the need for solid waste disposal, it is the reason why there is interest in systems that optimize the use of water in toilets.


Nowadays the water is a scarce resource, so the rational use of this resource is an actual necessity for saving this resource and for the environmental protection, especially if we considered the toilet the major water consumers in homes.


3. DESCRIPTION OF THE INVENTION

The two-level water flushing device for toilets, allows the user to select between a partial flush recommended for liquid waste and full flush recommended for solid waste. This device is designed to allow previously set or adjust the volume of water used in the partial flush. The partial and total flushes are performed by pushing one of the two flush handles arranged on the front wall of toilet cistern.


This device is designed to be included as original part of new toilet cisterns or be a replacement unit for cisterns in use.


This device operates in combination with the water drainage of the toilet cistern.


Consists of:


A modified overflow pipe with an elliptical tubular structure,


A flapper valve, called full flush valve, is used for the full flush, has the shape of a cylindrical bell with a flat circular flap with rubber gasket in its lower part, has an inner tubular structure with threads on entire inner surface of this tubular structure, has an internal space to catch air that allows its buoyancy in a full flush, has an elliptical tubular structure for a vertical linear movement without angular displacement on the modified overflow pipe for opening and closing this valve, and is mounted on the water flow casing of the lower structure of the modified overflow pipe,


A pipe nipple, called adjustable height pipe, with a flat circular flap in its upper top, with threads on a part of the length of the outer wall, and which is mounted a variable depth in the inner tubular structure of the full flush valve. This pipe nipple allows to set the water volume used in partial flush by varying the threaded depth inside the full flush valve and subsequent adjustment with a nut and gasket,


A flapper valve, called partial flush valve, used for partial flush, has the shape of a cylindrical bell with a flat circular flap with rubber gasket in its lower part, has an internal space to catch air that allows its buoyancy in a partial flush, has an elliptical tubular structure for a vertical linear movement without angular displacement on the modified overflow pipe for opening and closing this valve, and is mounted on adjustable height pipe, and


A pair of concentric and axial flush handles mounted in the front wall of the toilet cistern with their respective lever bars and lift chains or ropes,


The output of the water from the cistern to the toilet bowl in a full flush is performed through the opening in the water flow casing of the modified overflow pipe, while a partial flush is performed through the adjustable height pipe and the inner tubular structure of the full flush valve,


The both flush valves have like a common axis for vertical linear movement without angular displacement to the elliptical tubular structure of the modified overflow pipe. The main objective of this invention is to provide a device that allows the user to save water by selecting between a partial flush recommended for liquids waste and a full flush recommended for solids waste. Also the purpose of this invention is to provide a device that:

    • 1) provide a new mechanism of two-level water flushing for toilet cisterns, in a new and different configuration,
    • 2) allow saving water in toilets choosing between two water levels without losing sanitary purposes,
    • 3) easy to use,
    • 4) easy to install, without the need for modifications in the toilet cisterns,
    • 5) it can be installed in a variety of models and sizes of toilet cisterns,
    • 6) it can be used as a replacement unit in toilet cisterns in use or it can be mounted on new toilet cisterns,
    • 7) to be a high performance and profitable for both the manufacturer and the consumer, and
    • 8) to be an device that contributes to environmental protection.


These and other objects and advantages of the present invention will become evident from the following description of the preferred embodiment and the claims in conjunction with the accompanying drawings





4. DESCRIPTION OF THE DRAWINGS

Other features and advantages of the present invention will become apparent from a description of each of the parts with reference to the accompanying drawings, in which:



FIG. 1 is a schematic view of the invention mounted in the toilet's water storage cistern; the cistern is cut off for a better understanding,



FIG. 2 shows the modified overflow pipe in one isometric view, one top view, and one lateral view,



FIG. 3 shows the full flush valve in two isometric views, one top view, and one lateral view,



FIG. 4 shows the adjustable height pipe in one isometric view, one top view, and one lateral view,



FIG. 5 shows the partial flush valve in two isometric views, one top view, and one lateral view,



FIG. 6 shows the assembly of flush handles with their lever bars and assembly accessories in one isometric view, one top view, and one lateral view,



FIG. 7 shows the disintegrated assembly of flush handles with their lever bars and assembly accessories in one isometric view, and four detail views,



FIG. 8 show the full flush handle in two isometric views, one top view, one lateral view, and one detail view,



FIG. 9 show the partial flush handle in two isometric views, one top view, one lateral view, and one detail view,



FIG. 10 show the full flush lever bar in one isometric view, one top view, one lateral view, and three detail views,



FIG. 11 show the partial flush lever bar in one isometric view, one top view, one lateral view, and two detail views,



FIG. 12 shows gaskets of the full flush valve, of the adjustable height pipe, and of the partial flush valve



FIG. 13 is a front view of the flushing mechanism with Water Level (WL) in the storage cistern at full load of water,



FIG. 14 is a front view of the flushing mechanism with the partial flush handle activated for a partial flush,



FIG. 15 is a front view of the flushing mechanism with the full flush handle activated for a full flush.





5. PREFERRED EMBODIMENT OF THE INVENTION

The best way to implement this two-level water flushing device for toilets 10 is to be presented in terms of a preferred embodiment designed to allow the user to choose between a partial flush of previously set water volume and a full flush of all the water content in the toilet cisterns.


The preferred embodiment of this device 10 is as shown in FIGS. 1 to 15, comprising five major elements: a modified overflow pipe 15, a full flush valve 30, an adjustable height pipe 45, a partial flush valve 55, and a pair flush handles 65 and 70. This device is designed to be installed in toilet cisterns 11 incorporating a water inlet valve with its respective ball float. All these major elements may be constructed preferably of plastic or also some metal resistant to corrosion.


The modified overflow pipe 15 is shown in FIG. 1 mounted between the water cistern 11 and the toilet bowl, and in detail in FIG. 2. This modified overflow pipe 15 consist of an elliptical tubular structure 15E in which lower end has a water flow casing 15B, the same having in its upper part a flat surface 15D with a cavity or circular hole 15C for the passage of water, and in the lower part has a flat surface from which it derives a circular threaded 15A for the passage of water to the toilet bowl and for fixing the modified overflow pipe 15 with the base of the water cistern 11.


The reason why the tubular structure is elliptical responds to the necessity that the vertical linear movements for opening and closing of the flush valves, these valves do not suffer angular displacements, and can perform an effective seal.


The full flush valve 30 is shown in FIG. 1 mounted on the water flow casing 15B of the modified overflow pipe 15, and in detail in FIG. 3. This valve consists of an outer cylindrical structure bell shaped 30C with a lower flat circular flap 30A, with a rubber gasket assembly 25 in the flat circular flap 30A, with a upper flat circular surface 30B with a concentric cavity or circular hole 30F, with a circular inner tubular structure 30D built in the cavity or hole 30F and with the same diameter to it, with a thread 30E on the entire inner surface of the tubular structure 30D, with an internal space 30I which allows air capture for buoyancy in a full flush, with an elliptical tubular structure for vertical linear movement without angular displacement 30G around the elliptical tubular structure 15E of the modified overflow pipe 15, with a fixing strap 30H in which is fixed the chain or rope lift 60, and which is mounted on the water flow casing 15B of the modified overflow pipe 15. The inner circular tubular structure 30D is used for the passage of water to the toilet bowl in a partial flush, maintaining the internal space 30I and the inside water flow casing 15B of the modified overflow pipe 15 with air at atmospheric pressure.


The adjustable height pipe 45 is shown in FIG. 1 mounted in the full flush valve 30, and in detail in FIG. 4 in which is shown assembled with an adjustment bolt 40 and a sealing gasket 35. The adjustable height pipe 45 has a flat circular flap 45A in its upper part whose purpose is to provide support base for the partial flush valve 55, also has a threaded 45B portion on its outer tubular surface that is used to screw to varying depth into the inner circular tubular structure 30D of the full flush valve 30 in order to set the volume of water used in the partial flush. The inner free part 45C of this pipe nipple is used for the passage of water to the toilet bowl in a partial flush, maintaining the internal space 30I of the full flush valve 30 and the interior of the water flow casing 15B of the modified overflow pipe 15 with air at atmospheric pressure.


The partial flush valve 55 is shown in FIG. 1 mounted on adjustable height pipe 45, and in detail in FIG. 5. This valve consists of a cylindrical structure cylindrical bell shape 55B with a flat circular flap 55A, with a rubber gasket assembly 50 in the flat circular flap 55A, with a upper flat circular surface 55C, with an internal space 55E that allow capture the air for buoyancy in a partial flush, with an elliptical tubular structure for vertical linear movement without angular displacement 55D around the elliptical tubular structure 15E of the modified overflow pipe 15, with a fixing strap 55E in which is fixed the chain or rope lift 61, and which is mounted on the flat circular flap 45A of the adjustable height pipe 45.


When the toilet cistern 11 is full load of water and ready for a new flush, the modified overflow pipe 15, the full flush valve 30, the adjustable height pipe 45, and the partial flush valve 55 maintains an internal common space with air at atmospheric pressure. This internal common space to atmospheric pressure allows register a positive relative pressure (gauge) over the valves 30 and 55, which keeps them closed and sealed. Because the water column at the level of the flapper 30A of the full flush valve 30 is greater than the water column at the level of the flapper 55A of the partial flush valve 55, the total gauge pressure on valve 30 will be greater than the gauge pressure on the partial flush valve 55, therefore, the force or torque required for opening the full flush valve 30 will be greater than the force or torque required for opening the partial flush valve 55. In a partial flush the passage of water to the toilet bowl is directly through the adjustable height pipe 45C and the circular tubular structure 30D of the full flush valve 30, and does not pass through the water flow casing 15B of the modified overflow pipe 15, reason why in the interior of the water flow casing 15B and the internal space 30I of the of the full flush valve 30 maintains air at atmospheric pressure, making the full flush valve 30 continue close by the gauge pressure on the flap 30A. In a full flush the passage of water to the toilet bowl is directly through the water flow casing 15B of the modified overflow pipe 15.


The full flush handle 65 is shown in FIG. 1 mounted on the front surface of the toilet cistern 11 and in detail in FIGS. 6, 7, and 8. The full flush handle 65 is articulated with the upper end 85A of the full flush lever bar 85, the same that in its lower end is articulated to the fixing strap 30H of the full flush valve 30 by a chain or rope lift 60. A free space 65C runs along the central axis of the full flush handle 65, which has three gear teeth 65D arranged in the interior of the free space 65C for the articulation with the upper end 85A of the full flush lever bar 85.


The full flush lever bar 85 is shown in FIG. 1, and in detail in FIGS. 6, 7 and 10. This full flush lever bar 85 has a cylindrical structure 85A in its upper end, having three longitudinal slots 85B for articulation with the gear teeth 65D of the full flush handle 65.


The partial flush handle 70 is shown in FIG. 1 mounted on the front surface of the toilet cistern 11 and in detail in FIGS. 6, 7, and 9. This partial flush handle 70 is mounted in the free space 65C of the full flush handle 65, articulated to the upper end 90A of the partial flush lever bar 90, the same that in its lower end is articulated to the fixing strap 55E of the partial flush valve 55 by a chain or rope lift 61. A solid central axis 70B of the partial flush handle 70 runs along the free space 65C of the full flush handle 65, the same that has three slots 70E for the articulation with the gear teeth 90B of the partial flush lever bar 90.


The partial flush lever bar 90 is shown in FIG. 1 and in detail in FIGS. 6, 7, and 11. This partial flush lever bar 90 has a ringed structure 90A in its upper end, the same that has three gear teeth 90B for the articulation with the slots 70E of the partial flush handle 70.


6. OPERATION

The two-level water flushing device for toilets 10 is designed to provide the user a partial flush of a previously set water volume and a full flush of all the water content in the toilet cistern. Prior to the flushing operation by any of the flush handles 65 and 70, the water level WL in the toilet cistern 11 must be at full load of water and the flushing device 10 must be as is shown in FIG. 13. As shown, the full flush valve 30 is making a hermetic seal with the water flow casing 15B of the modified overflow pipe 15, in the inner tubular structure 30D of the full flush valve 30 is screwed the adjustable height pipe 45, the flat circular flap 45A of the adjustable height pipe 45 is making a hermetic seal with the partial flush valve 55, and the flush handles 65 and 70 are in standby.


A water flushing is carried out by performing the following steps:

    • 1) Partial Flush—a partial flush of a previously set volume of water is performed by pushing down the flush handle 70. When the partial flush handle 70 is pushed as shown in FIG. 14, a leverage is generated on the partial flush lever bar 90 that creates a counterclockwise torque on the chain or rope lift 61 that performed a vertical linear movement upwards without angular displacement by the elliptical tubular structure 15E of the modified overflow pipe 15 for the opening of the partial flush valve 55, starting the water flush to the toilet bowl, the air captured inside the partial flush valve 55 keeps it floating while the water is flushing, when the water level WL in the toilet cistern 11 reaches the level of the flat circular flap 45A of the adjustable height pipe 45 the union of this flap 45A with the flap 55A of the partial flush valve 55 creates a hermetic seal, thus restarting the filling of water into the toilet cistern 11.
    • 2) Full Flush—a full flush of water is performed by pushing down the flush handle 65. When the full flush handle 65 is pushed as shown in FIG. 15, a leverage is generated on the full flush lever bar 85 that creates a counterclockwise torque on the chain or rope lift 60 that performed a vertical linear movement upwards without angular displacement by the elliptical tubular structure 15E of the modified overflow pipe 15 for the opening of the full flush valve 30, starting the full water flush to the toilet bowl, the air captured inside the full flush valve 30 keeps it floating while the water is flushing, when the water level WL in the toilet cistern 11 reaches the level of the upper flat surface 15D of the water flow casing 15B of the modified overflow pipe 15 the union of this flat surface 15D with the flap 30A of the full flush valve 30 creates a hermetic seal, thus restarting the filling of water into the toilet cistern 11.

Claims
  • 1) The two-level water flushing device for toilets, which can be operated for a partial flush or a full flush of water contained in the toilet cistern, designed for installing in toilet cisterns, consisting of a modified overflow pipe, a full flush valve, an adjustable height pipe, and a partial flush valve, characterized by maintaining an internal common space at atmospheric pressure in the state of full load of water in the toilet cistern and in the state of charge of water to the toilet cistern after a flush, these devices comprise: a) an overflow pipe called modified overflow pipe, with an elliptical tubular structure, with a water flow casing in its lower part, the same having in its upper part a flat surface with a cavity or circular hole for the passage of water, and in the lower part has a flat surface from which it derives a circular threaded for the passage of water to the toilet bowl and for fixing the modified overflow pipe with the base of the water cistern, and which is mounted between the water cistern and the toilet bowl, in a partial flush must be keep air at atmospheric pressure inside the water flow casing making the full flush valve remains to close, using the elliptical tubular structure as a vertical linear movement axis without angular displacement for opening and closing the full flush valve and the partial flush valve,b) a flapper valve called full flush valve, which releases the toilet cistern water outlet to the toilet bowl in a full flush, by having cylindrical bell shape with a flat circular flap with rubber gasket in its lower part, by having a fixing strap, by having a flat circular surface with a circular cavity or hole in the upper part from which it derives an inner tubular structure of equal diameter to this cavity or hole, with thread on the entire internal surface of the inner tubular structure of this valve, by having an internal space for air capture to buoyancy in a full flush, because being mounted on the water flow casing of the modified overflow pipe the inner tubular structure of this valve crosses the entire internal space of the water flow casing of the modified overflow pipe, because the outside diameter of the inner tubular structure of this valve is less than the diameter of the circular cavity or hole of the lower flat surface of the water flow casing of the modified overflow pipe leaving a free space to outlet overflow water, because in a partial flush the inner tubular structure of this valve and the adjustable height pipe constitute the outlet passage of water from the toilet cistern to the toilet bowl, because in a partial flush air is maintained at atmospheric pressure in the internal space for capturing air for buoyancy of this valve and in the interior of the water flow casing of the modified overflow pipe, because in a partial flush this valve remains closed by the pressure gauge on it, by using the inner tubular structure of this valve as a means of setting the threaded depth of the adjustable height pipe in order to set the volume of water used in partial flush, and by having an elliptical tubular structure that uses the elliptical tubular structure of modified overflow pipe as a vertical linear movement axis without angular displacement in the opening and closing this valve,c) a pipe nipple called adjustable height pipe, which is used to set volume of water used in partial flush by means of an adjustment of the threaded depth in the inner tubular structure of the full flush valve, by having a flat circular flap on the upper end, by having thread on part of the outer tubular structure, to be threaded to variable depth in the inner tubular structure of full flush valve and sealed with a nut and gasket, and because in a partial flush the inner tubular structure of the full flush valve and the adjustable height pipe constitute the outlet passage of water from the toilet cistern to the toilet bowld) a flapper valve called partial flush valve, which releases the toilet cistern water outlet to the toilet bowl in a partial flush, by having cylindrical bell shape with a flat circular flap with rubber gasket in its lower part, by having a flat circular top surface, by having a fixing strap, by having an internal space for air capture to buoyancy in a partial flush, because it is mounted on the flat circular flap of the adjustable height pipe, and by having an elliptical tubular structure that uses the elliptical tubular structure of modified overflow pipe as a vertical linear movement axis without angular displacement in the opening and closing this valve,
  • 2) The two-level water flushing device for toilets, which can be operated for a partial flush or a full flush of water contained in the toilet cistern, designed for installing in toilet cisterns, consisting of two flush handles with their respective lever bars, the same witch are articulated to the valves that were specified in the claim 1 by chain or rope lift, these devices comprise: a) a full flush handle is mounted on the front surface of the toilet cistern, articulated to a lever bar, the same that is articulated to the full flush valve by a chain or rope lift, it will be used for manual operation of the full flush, by having a rotatable axis with an axial cavity or hole that run along all the length of this rotatable axis, by having three gear teeth for the articulation with the lever bar, and for housing within this cavity or hole to the partial flush handle,b) a partial flush handle is mounted on the front surface of the toilet cistern, articulated to a lever bar, the same that is articulated to the partial flush valve by a chain or rope lift, it will be used for manual operation of the partial flush, by having a solid rotatable axis, by having three slots for the articulation with lever bar, and it is being mounted inserting into the cavity or hole of full flush handle.Wherein the water flushing is carried out for the realization of the following steps:(1) Partial Flush—to the push on the partial flush handle a leverage is generated on the lever bar that creates a counterclockwise torque on its respective chain or rope lift, that performs a vertical linear movement upwards without angular displacement by the elliptical tubular structure of the modified overflow pipe for the opening of the partial flush valve, starting the partial flush of water to the toilet bowl through the adjustable height pipe and the inner tubular structure of full flush valve, the air captured inside the partial flush valve keeps it floating while the water is flushing, the air at atmospheric pressure in the internal space of the water flow casing of the modified overflow pipe keeps close the full flush valve because the gauge pressure on it, when the water level in the toilet cistern reaches the level of the flat circular flap of the adjustable height pipe the union of this flap with the flap of the partial flush valve create a hermetic seal restarting the filling of water into the toilet cistern,(2) Full Flush—to the push on the full flush handle a leverage is generated on the lever bar that creates a counterclockwise torque on its respective chain or rope lift, that performs a vertical linear movement upwards without angular displacement by the elliptical tubular structure of the modified overflow pipe for the opening of the full flush valve, starting the full flush of water to the toilet bowl through the water flow casing of the modified overflow pipe, the air captured inside the full flush valve keeps it floating while the water is flushing, when the water level in the toilet cistern reaches the level of the upper flat surface of the water flow casing of the modified overflow pipe the union of this surface with the flap of the full flush valve create a hermetic seal restarting the filling of water into the toilet cistern,
  • 3) The device according the claim 1 characterized by having the modified overflow pipe with tubular structure of any geometric figure but used as a vertical linear movement axis without angular displacement of the flush valves for opening and closing of these,
  • 4) The device according the claim 1 characterized by the shape of the uppers flat surfaces of the full flush valve and the partial flush valve are of any geometric figure and the bell shape of these flush valves are characterized by the geometric figure of these uppers flat surfaces of these flush valves,
  • 5) The device according the claims 1 to 4 characterized by the non-existence of the adjustable height pipe, and the partial flush valve is mounted directly on the upper flat surface of the full flush valve,
  • 6) The device according the claims 1 to 5 characterized by the partial flush valve does not used the tubular structure of the modified overflow pipe as a vertical linear movement axis for opening and closing this valve, instead uses a rotary axis structure for opening and closing built on the full flush valve structure or on the adjustable height pipe structure,
  • 7) The device according the claims 1 to 6 characterized by the full flush valve and the partial flush valve uses one or more vertical linear movement axes other than the tubular structure of the modified overflow pipe for opening and closing these valves,
  • 8) The device according the claims 1 to 6 characterized by the full flush valve does not use the tubular structure of the modified overflow pipe as a vertical linear movement axis for opening and closing this valve, instead uses a rotary axis structure for opening and closing built on the structure of the modified overflow pipe,
  • 9) The device according the claims 1 to 8 characterized by the existence of a single flush handle articulated to a single lever arm which is in turn articulated to the partial flush valve by a chain or rope lift which passes through a pulley fixed to the upper end of the modified overflow pipe or the structure of the toilet cistern, articulated to this single lever arm is the full flush valve by a second chain or rope lift without the use of a pulley, and vice versa.
  • 10) The device according the claims 1 to 9 characterized by the flapper valve called full flush valve to being mounted on the water flow casing of the modified overflow pipe the inner tubular structure of this valve not crosses the entire internal space of the water flow casing of the modified overflow pipe leaving a free space to outlet overflow water, because the outside diameter of the inner tubular structure of this valve is equal to or larger than the diameter of the circular cavity or hole of the lower flat surface of the water flow casing of the modified overflow pipe,
Priority Claims (1)
Number Date Country Kind
001463-2012/DIN Sep 2012 PE national
PCT Information
Filing Document Filing Date Country Kind
PCT/PE2013/000009 9/9/2013 WO 00