The present invention relates generally to a heat transfer apparatus such as a condenser. More particularly, the present invention concerns a two part condenser that has a heat exchange element associated with each of the two parts. The component parts may be used individually or collectively to effect different rates of condensing.
Condensers are used in laboratory and industrial settings in order to extract liquid from a gas mixture. Typically, a condenser is employed for condensing vapor from a mixture of condensable and noncondensable gases. In this manner a gas mixture can be broken up into various components. For instance, a gas mixture may contain water in the form of steam along with a certain amount of a noncondensable gas. A condenser may be used in order to convert the steam in the gas mixture into liquid water that can then be drained from the condenser. The resulting noncondensable gas that is in a purer form without the associated steam can then be used for a desired purpose.
Condensers generally include coils through which cold water is pumped. Heat transfer occurs when a warm gas mixture is passed over the cooler coils to result in condensation of one or more of the elements in the gas mixture. The condensation can be collected at the bottom of the condenser while the noncondensable gas is transferred through the top of the condenser to a desired location.
A technician may increase or decrease the flow rate and/or temperature of water that is pumped through the coils if a different rate of condensation is desired. In some instances these types of modifications may not be possible or suitable to attain a desired condensation rate. As an alternative solution, the condenser itself may be replaced with a different condenser that is configured differently in order to render a different rate of condensation. This approach may also be problematic in that the condenser must be disconnected from associated equipment. Replacement of the condenser results in an expenditure of time and effort and requires that the replacement condenser have fittings that are compatible with the associated equipment.
Accordingly, there remains room for variation and improvement within the art.
Various features and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned from practice of the invention.
It is at least one aspect of at least one embodiment of the present invention to provide for a heat transfer apparatus, such as a condenser, that allows a technician to vary the rate of heat transfer. The apparatus includes a first component with a first heat transfer element and a second component with a second heat transfer element. The first component may be capable, by itself, of heating or cooling a fluid by a first heat transfer rate. The first and second components are releasably attachable to one another so that when attached a combined rate of heat transfer is realized through the presence of both the first and second heat transfer elements. The second component may be released from the first component when the combined rate of heat transfer is no longer desired. The ability to attach and remove the components from one another allows the technician to vary the rate of heat transfer without requiring changes in the temperature of the first and second heat transfer elements. Further, the components may be attached and removed from one another without having to completely detach associated equipment.
Another aspect of an embodiment of the present invention exists in which the first heat transfer member may include a plurality of coils that form a passageway. The second heat transfer member may also have a plurality of coils that are sized to fit into the passageway formed by the coils of the first heat transfer member when the first and second components are attached to one another. The first and second components can also include tubes that are placed into communication with one another when the two components are attached. The fluid that is heated or cooled may flow through the tubes and over the coils in order to effect heat transfer.
Various exemplary embodiments of the invention exist in which attachment of the first and second components can be accomplished in a number of manners. For example, the second component may include a male fitting that is received into a female fitting of the first component. A connecting cap is included on the second component and has internal threading that engages external threading on the female fitting of the first component. The technician tightens the connecting cap in order to attach the first and second components and can loosen the connecting cap when disengagement is desired.
The first and second components may be configured to be heat transfer devices that can operate independently of one another in accordance with other aspects of the present invention. For example, the first component can include a tube that surrounds coils of the first heat transfer element so that a fluid inside of the tube can be cooled and condensed. The second component may function as a coldfinger type condenser and have a plurality of coils that are outside of a tube. The first and second components can be attached to one another so that a combined rate of heat transfer is realized though the presence of both the first and second heat transfers elements.
It is yet another aspect of at least one embodiment of the present invention to provide for a condenser that has a first component with a first heat transfer element. The first heat transfer element includes a plurality of coils in communication with a first component inlet port and a first component outlet port configured to allow a fluid to pass through the first heat transfer element. The first component has a tube that surrounds the coils of the first heat transfer element. The first heat transfer element is configured to cool gas present in the tube to cause condensation. A second component with a second heat transfer element that has a plurality of coils in communication with a second component inlet port and a second component outlet port is also present. The second component inlet and outlet ports allow a fluid to pass through the coils of the second heat transfer element. The first and second components are releasably attachable to one another. At least some of the coils of the second heat transfer element are positioned in a passageway defined by the coils of the first heat transfer element when the first and second components are attached. The first and second heat transfer elements act to cool gas present in the tube to cause condensation.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, which makes reference to the appended FIGS. in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the invention.
Reference will now be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, and not meant as a limitation of the invention. For example, features illustrated or described as part of one embodiment can be used with another embodiment to yield still a third embodiment. It is intended that the present invention include these and other modifications and variations.
It is to be understood that the ranges mentioned herein include all ranges located within the prescribed range. As such, all ranges mentioned herein include all sub-ranges included in the mentioned ranges. For instance, a range from 100-200 also includes ranges from 110-150, 170-190, and 153-162. Further, all limits mentioned herein include all other limits included in the mentioned limits. For instance, a limit of up to about 7 also includes a limit of up to about 5, up to about 3, and up to about 4.5.
The present invention provides for a heat transfer apparatus, described for sake of example as a condenser 10, that is made of a first component 12 and a second component 14. The condenser 10 functions in order to condense steam or other condensable vapor from a gas mixture. The first and second components 12 and 14 are configured for releasable attachment with one another so that they can be attached and detached by a technician with minimal effort. Each of the components 12 and 14 has a heat transfer element 16 and 18 to provide cooling for condensation. The first component 12 is configured as a fully functional condenser to condense at a desired rate. The second component 14 may be connected to the first component 12 so that additional condensation ability, as afforded by the second heat transfer element 18, is incorporated into the combined condenser 10. The first and second components 12 and 14 can be used separately or together with one another to give the technician flexibility in selecting a rate of heat transfer.
The first component 12 includes a first heat transfer element 16 that forms a plurality of coils through which a liquid or gas may be passed. The coils of the first heat transfer element 16 may be attached to, or spaced a distance from, the inner wall of the tube 30. The coils of the first heat transfer element 16 define a passageway 32 therethrough for receipt of a second heat transfer element 18 of the second component 14 as will be momentarily discussed. A fluid, such as water, may be introduced into the first heat transfer element 16 from a first component inlet port 28. A desired amount of pressure can be applied in order to transport the water out of the first heat transfer element 16 by way of a first component outlet port 26. The ports 26 and 28 may be configured in any commonly known manner in order to provide fluid communication between the coils of the first heat transfer element 16 and a water source. For example, the ports 26 and 28 may be standard #7 internal screw thread connectors in accordance with one exemplary embodiment.
A gas mixture can be introduced into the first component 12 through the inlet 20. The gas mixture will then pass through the tube 30 while being cooled by cooler water that is transferred through the coils of the first heat transfer element 16. Heat is then transferred out of the gas mixture by conduction, convection, or a combination of the two and into the coils of the first heat transfer element 16. Cooling of the gas mixture causes steam in the gas mixture to condense into a liquid form in the tube 30. The temperature and/or rate of water passed through the first heat transfer element 16 may be modified in order to change the rate of heat transfer and resulting rate of condensation. The condensate may then exit the first component 12 through the inlet 20. Alternatively, the first component 12 may be configured so that a drainage outlet separate from the inlet 20 is present for the removal of condensate. Noncondensable gas that is in a purer form without the associated condensed steam can be removed from the tube 30 by way of a female fitting 34 after passing across the first heat transfer element 16.
The second heat transfer element 18 is sized and shaped so as to be received into the passageway 32 of the first heat transfer element 16. This arrangement is shown in
A connection 42 may be used in order to attach the first and second components 12 and 14 to one another. The connection 42 may be configured in a variety of manners. For example, the connection 42 may be a Rodaviss® ground joint connection provided by Kimble/Kontes of Vineland, N.J. The female fitting 34 is provided with external threading thereon. In accordance with one exemplary embodiment, the female fitting 34 is a 24/40 Rodaviss® outer fitting. A male fitting 36 on the second component 14 is received by the female fitting 34. The male fitting 36 may be configured in a variety of manners. For example, the male fitting 36 is a 24/40 Rodaviss® inner fitting in accordance with one exemplary embodiment. A connecting cap 38 is provided on the second component 14 and has internal threading thereon that mate with the external threading on the female fitting 34. A technician may maneuver the second component 14 into the first component 12 until the male fitting 36 is inserted into the female fitting 34. The technician may rotate and tighten the connecting cap 38 until the connection 42 between the first and second components 12 and 14 is formed. The connecting cap 38 allows the connection 42 to be formed without requiring the components 12 and 14 to rotate relative to one another. An O-ring 40 is incorporated into the connection 42 to prevent leakage of fluid from the inside of condenser 10 from escaping through the connecting cap 38.
Connection and removal of the first and second components 12 and 14 can each be accomplished in a single step by the technician. The technician simply inserts the second component 14 into the first component 12 and tightens the connecting cap 38 until a suitable connection is established. For removal, the technician loosens the connecting cap 38 and pulls the components 12 and 14 apart. The condenser 10 thus provides an easy and fast way of varying the heat transfer/condensing rate in order to save time and effort. Although described as employing a threaded connection 42, it is to be understood that other arrangements are possible. For example, the first component and second component may be friction fit or attached by mechanical fasteners to one another.
Referring back to
The tube 52 is generally sized so as to be of a shorter length than the tube 30. The tube 52 may be from 2-6 inches in length, and in particular 2¾ inches in length, in accordance with various exemplary embodiments. The tube 30 may be from 4-18 inches in length, and in particular 8 inches in length, in accordance with other exemplary embodiments. The tubes 30 and 52 along with the heat transfer elements 16 and 18 may be made of glass. It is to be understood, however, that other materials can be used in construction of the various parts of the condenser 10.
The condenser 10 gives the technician greater flexibility in selecting different heat transfer/condensing rates. The first component 12 can be connected to a source of supply gas mixture and can condense steam or other condensable gas from the mixture at a particular rate. The second component 14 can then be incorporated into and attached to the first component 12 without having to disconnect the source of supply gas mixture from the first component 12. Incorporation of the second component 14 causes an increase in the heat transfer/condensing rate due to the presence of an additional heat transfer element 18. Alternatively, variation in the heat transfer/condensing rate can be realized by keeping the first and second components 12, 14 incorporated into one another. For instance, the flow of water through the first heat transfer element 16 may be shut off while the flow of water through the second heat transfer element 18 continues in order to result in a decreased heat transfer/condensing rate. Additionally or alternatively, the temperature and/or the rate of water flow through the heat transfer elements 16 and 18 can be modified in order to achieve a desired heat transfer/condensing rate.
Although described as condensing steam from a gas mixture, it is to be understood that the condenser 10 may be used to condense other types of elements, substances, and mixtures besides water. Further, in some applications the condenser 10 may be used for heating instead of cooling the gas mixture.
An experiment was carried out in accordance with one exemplary embodiment of the present invention in order to demonstrate an improved rate of condensation when using both the first and second components 12 and 14. Measurements were taken when using only the first component 12 and are shown below as Table 1:
At 32 minutes and 25 seconds the test was stopped and the amount of condensation was measured to be 26.0 milliliters. The second component 14 was then attached to the first component 12 and the procedure was rerun in order to see if an increased rate of condensing occurred. The results are shown below as Table 2:
At 32 minutes and 25 seconds the test was stopped and the amount of condensation was measured to be 30.8 milliliters. Therefore, addition of the second component 14 to the first component 12 resulted in an increase in the rate of condensation.
An additional experiment was carried out in accordance with one exemplary embodiment of the present invention. Here, water was transferred through the first heat transfer element 16 and cooling data, without the presence of the second heat transfer element 18, was obtained. The results to cool air using only the first component 12 are shown below as Table 3:
The second component 14 was then attached to the first component 12 in order to provide additional cooling of the air by use of water flowing through the second heat transfer element 18. The cooling results using both the first and second components 12 and 14 are shown below as Table 4:
A plot of some of the data points in Tables 3 and 4 are shown in
At larger flow rates, greater than around 900 milliliters per minute, the heat transfer rate of the combination of the first and second components 12 and 14 drops off. This drop off may be due simply to flow constraints within the first and second heat transfer elements 16 and 18 that require increased pressures to achieve increased flow rates. One way to increase the heat transfer rate at higher flow rates may be to increase the diameter of the coils of the first and second heat transfer elements 16 and 18 so as to require less pressure.
While the present invention has been described in connection with certain preferred embodiments, it is to be understood that the subject matter encompassed by way of the present invention is not to be limited to those specific embodiments. On the contrary, it is intended for the subject matter of the invention to include all alternatives, modifications and equivalents as can be included within the spirit and scope of the following claims.
This invention was made with Government support under Contract No. DE-AC09-96-SR18500 awarded by the United States Department of Energy. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
854976 | Woodcock | May 1907 | A |
1526320 | Cook | Feb 1925 | A |
1799081 | Blomqvist | Mar 1931 | A |
2324707 | Johnson | Jul 1943 | A |
2425669 | Barrington | Aug 1947 | A |
2508247 | Giauque | May 1950 | A |
2530798 | Arvins et al. | Nov 1950 | A |
3163209 | Shinn | Dec 1964 | A |
3730229 | D'Onofrio | May 1973 | A |
4061184 | Radcliffe | Dec 1977 | A |
4084546 | Schneeberger et al. | Apr 1978 | A |
4243097 | Vogel | Jan 1981 | A |
4462463 | Gorham, Jr. | Jul 1984 | A |
4471836 | Hokanson | Sep 1984 | A |
4799541 | Buna et al. | Jan 1989 | A |
4865124 | Dempsey | Sep 1989 | A |
5046458 | Kronich | Sep 1991 | A |
5046548 | Tilly | Sep 1991 | A |
5148861 | Colvin et al. | Sep 1992 | A |
6047767 | Bodhaine et al. | Apr 2000 | A |
6095240 | Hassanein et al. | Aug 2000 | A |
6102106 | Manning et al. | Aug 2000 | A |
6220344 | Beykirch et al. | Apr 2001 | B1 |
6499534 | Tawney et al. | Dec 2002 | B1 |
6823668 | Endoh et al. | Nov 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20070089870 A1 | Apr 2007 | US |