The invention relates to a two-part crimped contact element. The invention further relates to a method for producing a crimped contact element from at least two portions. The invention further relates to a device for producing a two-part crimped contact element.
Crimped contact elements comprise a crimped wire portion to which a wire or a cable can be secured and a contact member which is used for connection to a mating connector. In order to combine these two functional components, which have different requirements, in the greatest possible number of combinations in a crimped contact element, modular crimped contact elements comprising two portions which can be connected to each other already exist. U.S. Pat. No. 7,338,334 B2, for example, sets out such a modular system. However, the crimped contact element which is set out therein does not have adequate transition resistance between the two portions. Furthermore, the connection can be subjected to only low levels of mechanical loading. Furthermore, such crimped contact elements are difficult to produce and consequently costly.
An object of the invention is to provide a crimped contact element which is simple to produce and which has, for example, compared with U.S. Pat. No. 7,338,334 B2, reduced transition resistance and improved mechanical load capacity.
This object is achieved according to the invention for the crimped contact element mentioned in the introduction in that the at least two portions are joined together by means of at least one pressure-shaped connection element. In contrast to the connection set out in the prior art by means of bending, this type of connection provides a sufficiently large contact face with an intimate connection between the two portions. Consequently, the electrical resistance is small and the mechanical stability high. Furthermore, such a pressure shaping operation can be readily carried out in a single method step, which reduces costs.
The solution according to the invention can be freely combined and further improved with the following additional embodiments which are each advantageous per se.
It may be particularly advantageous for the at least two portions to be joined together exclusively by means of at least one pressure-shaped connection element. This further simplifies the production method. In many cases, the conductivity and mechanical stability achieved thereby is sufficient to comply with the corresponding standards.
In another advantageous embodiment, the crimped wire portion has a crimped insulation portion and a crimped core portion. The crimped insulation portion serves to be crimped with respect to an insulation of a cable and constitutes mechanical tensile relief for the cable. The crimped core portion serves to be crimped with respect to a metal core of a cable, for example, a wire or strands. This crimped core portion ensures the electrical connection between the cable or wire and the crimped contact element.
It may be particularly advantageous for the crimped contact element to comprise more than two, for example, three portions. In this instance, two portions may each be joined together again by means of at least one pressure-shaped connection element or a total of precisely only two portions may be joined together by means of such a pressure-shaped connection element and the other connections may be produced using other joining techniques.
In a particularly advantageous embodiment of the crimped contact element, one portion has at least one pressure-shaped extension which protrudes through an opening of the other portion. For example, when the crimped contact element is produced, an extension of a first portion may be guided through an opening of the other portion and the extension may be shaped by means of compression, as is the case for a rivet, in such a manner that the two portions are securely pressed one against the other. In particular, the pressure-shaped extension may completely fill the cross-section of the opening.
In order to produce a secure connection between the two portions, there may also be provided a plurality of pressure-shaped extensions which protrude through one or more openings of another portion. For example, one portion may have two extensions and the other portion may have two openings. Another possibility is that each portion has one opening and one extension which are connected to an extension or an opening of the other portion, respectively.
In another advantageous embodiment, the at least one pressure-shaped connection element is produced by means of clinching. This technique which is also known as pressure joining produces a connection between two sheets without an opening having to be provided on one of the portions. In the same manner as the connection by means of a pressure-shaped extension, the connection by means of clinching is also positive-locking and non-positive-locking.
In addition to the connection by means of at least one pressure-shaped connection element, at least two portions may be welded to each other. This further improves the electrical resistance and the mechanical stability and produces a materially-engaging connection between the two portions. For example, weld seams may be provided. A connection by means of spot welding or extensive welding is also possible. In this instance, additional materials may be applied or the welding may be carried out, for example, by means of current flow.
In order to further reinforce one of the portions, additional elements or constructions, such as beads or thickened portions, may be provided.
Owing to the two-part construction, it is possible for at least two portions to comprise different materials. In particular, the material may be adapted to the respective function, that is to say, for example, the crimped function or the insertion function. For instance, the crimped wire portion may thus be composed of low-alloy copper materials since this region is provided above all for contacting with respect to the wire and may be softer. The contact member may comprise, for example, a more highly alloyed material since this is intended to be more rigid.
In most cases, it is advantageous for the individual portions to be formed from a uniform material in each case. However, it is also possible for a portion to be produced, for example, from several layers of different materials. For example, an inner side may comprise a different material from an outer side. In particular, the individual portions may also be coated, for instance, in order to prevent corrosion.
Although the conductive portions comprise metal, other functional portions, such as a crimped insulation portion, may comprise non-metals. Consequently, the costs can be further reduced and the material properties better adapted to the function.
The invention is explained in greater detail below by way of example with reference to advantageous embodiments and the drawings. The embodiments described are only possible embodiments, in which the individual features, as described above, may, however, be combined independently of each other or omitted. Reference numerals which are the same in the different drawings refer to the same objects.
In the drawings:
In the production step A illustrated at the left-hand side, the first portion 2 and the second portion 3 are still in loose contact with each other. Two extensions 9 of the first portion 2 have been introduced through openings 10 of the second portion 3 and protrude from the second portion 3.
At the right-hand side B, the crimped contact element 1 is illustrated after the production of two pressure-shaped connection elements 17. The extensions 9 of the first portion 2 have been plastically deformed by means of mechanical pressure and now securely connect the first portion 2 to the second portion 3. Owing to the permanent, plastic deformation of the extensions 9, these become pressure-shaped extensions 11. The first portion 2 can thus be released from the second portion 3 only by means of great force. In particular, during such a release operation, at least one portion is in most cases damaged or destroyed.
In the state A, the second portion 3 may be retained by means of retention elements 12 of the first portion 2. For example, the second portion 3 may snap-fit into these retention elements 12.
The extensions 9 of the first portion 2 may be formed, for example, by flaps 13 which have been bent over.
In this example, the first portion 2, which forms the contact member 4 for connection to a mating connector comprises a lower portion 14 to which an additional spring 15 is fitted for mechanical stabilisation. This spring 15 further has a locking pawl 15 which can engage in a counter-contact.
A flap 13 of the first portion 2 has been bent upwards and guided through an opening 10 of the second portion 3. It forms an extension which is not yet pressure-shaped 9a. In another step, the extension 9 has been shaped by means of pressure shaping to form a pressure-shaped extension 11 and now forms the pressure-shaped connection element 17. This pressure-shaped extension 11 has in this view a mushroom-like cross-section. The originally flat metal sheet of the extension which has not yet been shaped 9a has its shape permanently changed and is now substantially thicker.
The extent in the direction of the plane of the two portions and transversely relative to the direction of the extension may be only small. For instance, this pressure-shaped connection element 17 may be rather point-like or button-like. However, the connection element, and consequently the connection, may also have a greater extent, for example, it may be linear, circular or polygonal.
The pressure-shaped connection element 17 produced in the form of a pressure-shaped extension 11 constitutes a secure connection between the first portion 2 and the second portion 3. Owing to the intimate connection of the first portion 2 to the second portion 3, the electrical resistance between both is low and the mechanical stability high.
The material of the first portion 2 may be selected in such a manner that it readily becomes deformed. Other aspects, such as, for example, rigidity, toughness, conductivity or chemical stability, may also be significant in the selection of the material.
The illustrated mushroom-like cross-section of the pressure-shaped extension 11 constitutes a simple possibility for uniform distribution of the pressure which occurs between the second portion 3 and the pressure-shaped extension 11. Nonetheless, other shapes of the cross-section, for example, a hammer-head-like or T-shaped configuration, may be selected since these may enable, for example, a better support face or a smaller structural height.
The pressure-shaped connection element 17 was produced in this instance by means of clinching, also known as pressure joining. The second portion 3 is connected to the first portion 2 in the manner of a push-button. Owing to the specific configuration of the connection cross-section, it is consequently made more difficult for the second portion 3 to slide out of the first portion 2.
The pressure-shaped connection element 17 may be produced by means of pressure-shaping the first portion 2 and lead to a first pressure-shaped connection element 17a. Accordingly, the second portion 3 may also be pressure-shaped, which leads to a second pressure-shaped connection element 17b. In particular, both portions may also be pressure-shaped at the same time and/or together.
The deformation may be carried out, for example, by means of an upper die and a bottom die. Owing to the expansion of the two portions, the portions may be thinner at the connection location than at other locations.
The spatial shape of the connection which is produced may be, for example, circular or rectangular when viewed from above or may also have any other shape.
For further mechanical stabilisation, additional elements, such as, for example, beads, may also be provided on one of the portions.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 054 316 | Oct 2011 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/069162 | 9/28/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/050299 | 4/11/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5399110 | Morello et al. | Mar 1995 | A |
5573434 | Ittah et al. | Nov 1996 | A |
5921822 | Kennedy et al. | Jul 1999 | A |
6254439 | Endo et al. | Jul 2001 | B1 |
6425786 | Scholler | Jul 2002 | B1 |
6619626 | Kruschinski | Sep 2003 | B1 |
7048551 | Takayama | May 2006 | B2 |
7338334 | Kumakura | Mar 2008 | B2 |
7394044 | Brun et al. | Jul 2008 | B2 |
20020049005 | Leve | Apr 2002 | A1 |
20020187686 | Zhao et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
1111834 | Nov 1995 | CN |
19955750 | May 2001 | DE |
10041516 | Mar 2002 | DE |
0106992 | May 1984 | EP |
0727843 | Aug 1996 | EP |
2383201 | Jun 2003 | GB |
2003323921 | Nov 2003 | JP |
Entry |
---|
International Search Report and Written Opinion issued by the European Patent Office, dated Dec. 3, 2012, for PCT/EP2012/069162; 10 pages. |
Report issued by the Deutsches Patent—und Markenamt (German Patent and Brand Office), dated Jul. 19, 2012, relating to Application No. DE 10 2011 054 316.3; 5 pages. |
International Preliminary Report on Patentability issued by the International Bureau of WIPO, Geneva, Switzerland, dated Apr. 8, 2014, for International Application No. PCT/EP2012/069162; 6 pages. |
English translation of the Second Office Action issued by the Chinese Patent Office, dated Jun. 22, 2016, for Chinese Patent Application No. 201280048749.2; 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140235118 A1 | Aug 2014 | US |