Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength

Information

  • Patent Grant
  • 11962085
  • Patent Number
    11,962,085
  • Date Filed
    Thursday, July 29, 2021
    2 years ago
  • Date Issued
    Tuesday, April 16, 2024
    a month ago
  • Inventors
    • Shi; Shawn (Thousand Oaks, CA, US)
  • Original Assignees
    • Aptiv Technologies AG
  • Examiners
    • Lee; Benny T
    Agents
    • Harness, Dickey & Pierce, P.L.C.
Abstract
This document a two-part folded waveguide with horns. For example, a waveguide includes a channel with an opening in a longitudinal direction at one end, and a sinusoidal shape that folds back and forth about a longitudinal axis that runs in the longitudinal direction through the channel. One part of the waveguide defines a surface of the channel featuring a plurality of radiation slots in the shape of a horn, which allows the two parts of the waveguide to be arranged and configured as one component. A first part of the waveguide has slots and an upper half of the walls of the channel and a second part provides a lower half of the walls of the channel and a surface of the channel opposite the slots. Using horns in combination with two parts enables ease of manufacturing a waveguide with an internal channel having a folded or sinusoidal shape.
Description
BACKGROUND

Some devices (e.g., radar) use electromagnetic signals to detect and track objects. The electromagnetic signals are transmitted and received using one or more antennas. An antenna may be characterized in terms of gain, beam width, or, more specifically, in terms of the antenna pattern, which is a measure of the antenna gain as a function of direction. Certain applications may benefit from precisely controlling the antenna pattern. A folded waveguide is a millimeter-sized component that may be used to improve desirable antenna characteristics; gradient lobes may be reduced or eliminated as unwanted electromagnetic radiation is allowed to leak from a folded or sinusoidal shaped channel (e.g., filled with air or other dielectric), which is embedded in the small component. Forming a small waveguide with a complex internal channel structure can be too difficult and, therefore, too expensive to be produced at a cost and scale (e.g., millions of units) required to support some industries that require improved antenna characteristics, including automotive and communication technology sectors.


SUMMARY OF THE INVENTION

This document describes techniques, systems, apparatuses, and methods for utilizing a two-part folded waveguide with horns. In one example, an apparatus includes a two-part folded waveguide with horns, which may be an air waveguide (in this document referred to as a waveguide). Securing the two parts of the waveguide does not require use of a conductive bonding layer, such as a dielectric paste, during manufacture because of a horn structure on a plurality of radiation slots of the waveguide. The horn structure allows for alternative means to secure the first part of the waveguide to the second part. The described waveguide includes a channel which forms a rectangular opening along a longitudinal axis at one end, and a sinusoidal shape that folds back and forth about the longitudinal axis that extends in the longitudinal direction along the channel. The channel further forms a plurality of radiation slots in the shape of a horn, each of the radiation slots including a respective hole extending through one of multiple surfaces of the two-part folded waveguide that defines the channel. The first part of the waveguide is separated from the second part of the waveguide by a layer of material.


In another example, a method for manufacturing a two-part folded waveguide with horns is described in accordance with techniques, systems, apparatuses, and methods of this disclosure. The method includes forming two parts of a two-part folded waveguide with horns, aligning the two parts of the two-part folded waveguide with horns, and securing the two parts of the two-part folded waveguide with horns. The two parts of the two-part folded waveguide with horns may be stamped, etched, cut, machined, cast, molded, or formed by injection molding. The two parts of the two-part folded waveguide with horns may be secured by a plastic fastener, a metal fastener, or a double-sided adhesive.


This Summary introduces simplified concepts related to a two-part folded waveguide with horns, which are further described below in the Detailed Description and Drawings. In addition, systems, as well as other techniques, systems, apparatuses, and methods are described below. This Summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The details of a two-part folded waveguide with horns are described in this document with reference to the following figures:



FIG. 1 illustrates an example environment for a two-part folded waveguide with horns, in accordance with this disclosure;



FIG. 2-1 illustrates a top-view of an example two-part folded waveguide with horns, in accordance with this disclosure;



FIG. 2-2 illustrates a top-view of another example two-part folded waveguide with horns, in accordance with, in accordance with this disclosure;



FIG. 2-3 illustrates a side view of the example two-part folded waveguide with horns, in accordance with this disclosure;



FIG. 3 illustrates ways for securing two parts of an example two-part folded waveguide with horns, in accordance with this disclosure;



FIG. 4 illustrates different shapes of horns and respective radiation slots, in accordance with this disclosure;



FIG. 5 depicts an example process for forming a two-part folded waveguide with horns, in accordance with this disclosure;



FIG. 6 illustrates a graph demonstrating antenna characteristics in accordance with this disclosure; and



FIG. 7 illustrates another graph demonstrating antenna characteristics in accordance with this disclosure.





The same numbers are often used throughout the drawings and the detailed description to reference like features and components.


DETAILED DESCRIPTION OF THE INVENTION

Overview


Some devices (e.g., radar) use electromagnetic signals to detect and track objects. The electromagnetic signals are transmitted and received using one or more antennas. An antenna may be characterized in terms of gain, beam width, or, more specifically, in terms of the antenna pattern, which is a measure of the antenna gain as a function of direction. Certain applications may benefit from precisely controlling the antenna pattern. A folded waveguide is a millimeter-sized component that may be used to improve some antenna characteristics; gradient lobes may be reduced or eliminated as unwanted electromagnetic energy is allowed to leak from a folded or sinusoidal shaped channel (e.g., filled with air) embedded in the component. Forming a waveguide with an internal folded channel can be too difficult and, therefore, too expensive to be produced at a cost and scale (e.g., millions of units) required to support some industry, including automotive and communication technology sectors.


In contrast, this document describes a two-part folded waveguide with horns. For example, an apparatus includes a two-part folded waveguide having multiple surfaces that define a channel, the two-part folded waveguide including a first part of the waveguide with a first surface from the multiple surfaces, the first surface having a sinusoidal shape that folds back and forth about a longitudinal axis that extends in a longitudinal direction through the channel and a plurality of radiation slots. Each of the radiation slots is in a shape of a horn that forms a respective hole extending through the first surface and into the channel. At least one second surface from the multiple surfaces is part of the first part and is perpendicular to the first surface to define an upper half of walls of the channel that are normal to the first surface. The first part further includes a first feature at one end of the waveguide defining a portion of a rectangular opening in the longitudinal direction and through to the channel. A second part of the waveguide is arranged adjacent to and parallel with the first part with a third surface from the multiple surfaces being parallel to the first surface and having the same sinusoidal shape as the first surface. At least one fourth surface from the multiple surfaces is between the second surface and the third surface and perpendicular to the first surface and the third surface. The fourth surface defines a lower half of the walls of the channel. The second part further includes a second feature at the same end of the waveguide as the first feature; the second feature defines a remaining portion of the rectangular opening that is not defined by the first feature.


In addition, this document describes an example method for manufacturing a two-part folded waveguide with horns. The method includes forming a first part of the waveguide such that the first part includes a first surface from the multiple surfaces, the first surface having a sinusoidal shape that folds back and forth about a longitudinal axis that extends in a longitudinal direction through the channel and a plurality of radiation slots, each of the radiation slots in a shape of a horn that forms a respective hole extending through the first surface and into the channel. Forming the first part further includes including at least one second surface from the multiple surfaces that is perpendicular to the first surface to define an upper half of walls of the channel that are normal to the first surface. The first part is further formed with a first feature at one end of the waveguide, the first feature defining a portion of a rectangular opening in the longitudinal direction and through to the channel. The method further includes forming a second part of the waveguide such that the second part of the waveguide includes a third surface from the multiple surfaces having the same sinusoidal shape as the first surface. The forming of the second part includes forming at least one fourth surface from the multiple surfaces to be perpendicular to the third surface. The fourth surface defines a lower half of the walls of the channel. The second part further includes a second feature at the same end of the waveguide as the first feature; the second feature defines a remaining portion of the rectangular opening that is not defined by the first feature. The method further includes arranging the second part of the waveguide to be adjacent to and parallel with the first part of the waveguide by orientating the first part of the waveguide with the second part of the waveguide to align the first feature of the first part of the waveguide with the second feature of the second part of the waveguide and aligning the upper half of the walls of the channel that are normal to the first surface of the first part of the waveguide with the lower half of the walls of the channel that are perpendicular to the third surface to cause the sinusoidal shape of the first and second parts of the waveguide to be aligned in parallel. In some examples there is a gap between the first and second parts. In other examples, there is a zero gap (e.g., direct contact between the two parts) or a small gap filled with materials of various types. If a gap is present, any unwanted effects that would otherwise result in an antenna pattern, are compensated by the horns.


This is just one example of the described techniques, systems, apparatuses, and methods of a two-part folded waveguide with horns. This document describes other examples and implementations.


Example Apparatus



FIG. 1 illustrates an example apparatus 100 for a two-part folded waveguide 102 with horns 124, in accordance with techniques, systems, apparatuses, and methods of this disclosure. The two-part folded waveguide 102 with horns 124 can be formed in accordance with example processes described herein, including using the processes described in FIG. 5. In general, the waveguide 102 is configured to channel energy associated with electromagnetic signals being transmitted through air to an antenna, a transceiver, a device, or other component that transmits or receives the electromagnetic signals, for example, to perform a function. For example, the apparatus 100 may be part of a sensor system (e.g., a radar system). The waveguide 102 may be integrated in the sensor system and coupled to an antenna or other component; these components are omitted from FIG. 1 for clarity.


The waveguide 102 may have multiple surfaces 110, 112, 114, and 116 that define a channel 104, or hollow core, for capturing the energy of electromagnetic signals transmitted through air. The channel 104 may be filled with air, or another suitable dielectric material. The channel 104 has a folding or a sinusoidal shape 118, which folds back and forth about a longitudinal axis 120 that extends in a longitudinal direction along a length of the waveguide 102, and a corresponding length of the channel 104.


The waveguide 102 may be constructed from metal, plastic, wood, or combinations thereof. No matter the construction material, it may be difficult to form a waveguide with a hollow core that has the sinusoidal shape 118 of the channel 104.


It is desirable to form the waveguide 102 with at least two separate parts (e.g. part one 106 and part two 108). However, this can introduce gaps and other irregularities in size or shape of the waveguide 102, which can cause unwanted effects in an antenna pattern. As is described below, the waveguide 102 can compensate for any unwanted effects that would otherwise come from forming the waveguide 102 out of more than one part, even if there are gaps. This compensation is provided at least in part by using a plurality of radiation slots 122 that are shaped as the horns 124. Each radiation slot from the plurality of radiation slots 122 includes a longitudinal slot that is parallel to the longitudinal axis 120 to produce a horizontal-polarized antenna pattern. The specific size and position of the radiation slots 122 can be determined using modeling and testing to arrive at their position and size to produce the particular desired antenna pattern.


The waveguide 102 includes at least two-parts, a first part 106 and a second part 108. When oriented and arranged in parallel (e.g., with some gap or no gap between), the first part 106 and the second part 108 create the channel 104. That is, the channel 104 includes interior surfaces formed by the surfaces 110, 112, 114, and 116 of the two parts 106 and 108. Specifically, the first part 106 includes the first surface 110, which provides a ceiling to the channel 104, which gives the channel 104 the sinusoidal shape 118 thereof (e.g., for eliminating gradient lobes). The first surface 110 also provides the plurality of radiation slots 122, which each have a shape of a horn 124. Each of the horns 124 is configured to form a respective hole extending through the first surface 110 and into the channel 104, to allow for electromagnetic energy leakage. The horns 124 can allow electromagnetic energy to escape the channel 104, thereby filtering the electromagnetic energy that remains in the channel 104 to be within a specific operating frequency for the channel 104 (or waveguide 102).


The first part 106 of the waveguide 102 also includes at least one second surface 112. The second surface 112 is perpendicular to the first surface 110 and is configured to define an upper half 126 of walls of the channel 104 that are normal to the first surface 110. When aligned, the two parts 106 and 108 divide the waveguide 102 (e.g., in half) laterally, which is perpendicular to the longitudinal axis 120. The first surface 110 provides the ceiling of the channel 104, through which the radiation slots 122 are formed, and the upper half of the walls that follow the sinusoidal shape 128 on both sides of the of the channel 104.


The waveguide 102 includes an opening (e.g., a rectangular opening) at one end of the channel 104 in the longitudinal direction 120, at which electromagnetic energy can enter the channel 104. A first feature 128 of the first part 106 is positioned at the same end of the waveguide 102 as the opening. The first feature 128 defines a portion of the opening that is created by a portion of the first surface 110 combined with a portion of the second surface 112 with the upper half 126 of the walls.


The second part 108 of the waveguide 102 is arranged adjacent to and parallel with the first part 106, in such a way so the channel 104 is formed. The second part 108 of the waveguide includes the third surface 114, and at least one fourth surface, including the fourth surface 116. The third surface 114 may be parallel to the first surface 110 and may include the same sinusoidal shape 118 as the first surface 110. The third surface 114 can be considered to form a floor of the channel 104, that is parallel to and opposite the ceiling formed by the first surface 110.


The fourth surface 116 is arranged between the second surface 112 and the third surface 114. The fourth surface 116 is perpendicular to both the first surface 110 and the third surface 114 so that the fourth surface 116 is congruent with the second surface 112. The fourth surface 116 is configured to define a remaining, lower half 130 of the walls of the channel 104. In other words, the fourth surface 116 is configured to extend or lengthen the walls partially formed by the second surface 112 to adjoin the walls to the floor of the channel 104 defined by the third surface 114. The lower half 130 of the walls meet the upper half 126 of the walls to form a consistent interior surface, on either side of the channel 104, that folds back and forth in the sinusoidal shape 118.


The second part 108 of the waveguide 102 also includes a second feature 132 at the same end of the waveguide as the first feature 128. The second feature 132 defines a remaining portion of the opening to the channel 104, which is not already defined by the first feature 128. In other words, when the first part 106 and the second part 108 are arranged in parallel as shown in FIG. 1, the first feature 128 in combination with the second feature 132 form the opening in the longitudinal direction 120 through the channel 104. In other words, each of the two parts 106 and 108 may include a corresponding feature 128 and 132 on a same end, which together, define the opening to the channel 104. The first feature 128 has a height “a” and a width “b”. The second feature 132 has the same height “a” and width “b”. The overall dimensions of the opening to the channel 104 includes a total height (e.g., a+a) which is twice the width (e.g. b is equal to a divided by two).


As such, the waveguide 102 with horns 124 provides several advantages over other waveguides, including being be easier to manufacture, in addition to providing a better antenna pattern that is free from gradient lobes or other unwanted antenna pattern characteristics that may appear when multiple parts are used and gaps are formed. By using a specific horn-shaped radiation slot, in combination with a two-part formation of a folded or sinusoidal-shaped internal channel 104, the waveguide 102 demonstrates enhanced stability for manufacturing purposes over a typical waveguide.



FIG. 2-1 illustrates a top-view 200-1 of an example two-part folded waveguide 102 with horns in accordance with the techniques, systems, apparatuses, and methods techniques, systems, apparatuses, and methods of this disclosure. The two-part folded waveguide 102 with horns may be manufactured from a composition of plastic, metal, composite materials, or wood. The waveguide 102 includes multiple surfaces (i.e., the first surface 110, the second surface 112, the third surface 114, and the fourth surface 116) as shown in FIG. 1 that define a channel 104 that extends along the longitudinal axis 120. The channel 104 has a rectangular opening 204 at one end of the waveguide 102. The rectangular opening 204 at one end of the waveguide 102 allows electromagnetic energy to enter the channel 104. The undesired wavelengths of the electromagnetic energy are allowed to leak out of the waveguide 102 through the plurality of radiation slots 122 in the shape of a horn, effectively filtering the electromagnetic energy for a specific operating frequency for the channel 104 (or waveguide 102).


The plurality of radiation slots 122 may be evenly distributed along the longitudinal axis 120 through the channel 104. A common distance 210 between each of the plurality of radiation slots 122 along the longitudinal axis 120 is one half a desired operating frequency or signal wavelength (e.g., λ/2), intended to be transmitted or received using the two-part folded waveguide 102 with horns 124. This separation by the common distance 210 can prevent grating lobes and ensure undesired wavelengths of electromagnetic energy are filtered out from a specific desired operating frequency for the channel 104 (or waveguide 102). The common distance 210 is less than one wavelength of the electromagnetic radiation that that is not allowed to leak out of the channel 104 by the radiation slots 122.



FIG. 2-2 illustrates a top-view 200-2 of another example two-part folded waveguide 102 with horns, with varying lengths 212, 214, 216, 218, and 220 also labeled in FIG. 2-2 as “L1”, “L2”, “L3”, “L4”, and “L5”, respectively) of the plurality of radiation slots 122 with horns within the waveguide 102, in accordance with techniques, systems, apparatuses, and methods of this disclosure. The varying lengths 212, 214, 216, 218, and 220 allow undesired wavelengths of electromagnetic energy to leak out of the waveguide 102 while ensuring the desired wavelength of electromagnetic energy reaches the reaches the end of the channel 104 opposite the rectangular opening 204. The waveguide 102 having multiple surfaces 110, 112, 114, and 116 as shown in FIG. 1 that define a channel 104 that extends along the longitudinal axis 120. Each of the plurality of radiation slots 122 is sized and positioned to produce a particular antenna pattern. The specific size and position of the radiation slots 122 can be determined by building and optimizing a model of the waveguide 106 to produce the particular antenna pattern desired.



FIG. 2-3 illustrates a side-view 200-3 of another example two-part folded waveguide 102 with horns 124, in accordance with techniques, systems, apparatuses, and methods of this disclosure. The first part 106 of the waveguide 102 is separated from the second part 108 of the waveguide by a layer of material 224 measuring less than twenty percent of the overall height “c” 226 of the waveguide in a direction perpendicular to the longitudinal axis 120. The first part 106, measures “c/2”, which is one half the overall height “c” 226, absent the height of the plurality of radiation slots 122 in the shape of a horn 124. The second part 108, measures “c/2”, which is one half the overall height “c” 226, absent the height of the plurality of radiation slots 122 in the shape of a horn 124. The layer of material 224 may be air or a dielectric material other than air. The layer of material 224 is introduced due to forming the waveguide 102 with horns 124 from two parts.


An individual horn 228 from the radiation slots 122 in the shape of a horn 124 on the waveguide 102 is illustrated. The radiation slots 122 in the shape of a horn 124 allow the first part 106 of the waveguide 102 to be constructed with additional structural stability resulting from the enhanced thickness 230 of the waveguide 102. The structural stability ensures quality in manufacturing of the millimeter-sized waveguide 102 which may otherwise suffer from gradient lobes resulting from manufacturing defects. The problem of forming a small waveguide 102 at the scale (e.g., millions of units) required to support some industries that require improved antenna characteristics is solved by the enhanced structural stability, which is compensated for using the horns 124 to provide an affordable waveguide solution.



FIG. 3 illustrates examples 300 of securing a two-part folded waveguide 102 with horns. One example technique to secure the two-part folded waveguide 102 with horns utilizes a double-sided adhesive 302, in accordance with techniques, systems, apparatuses, and methods of this disclosure. In another example, the first part 106 of the waveguide may be secured to the second part 108 of the waveguide by an external fastener 304. The external fastener 304 could include a plastic fastener or a metal fastener. In yet another example, the first part 106 of the waveguide may be secured to the second part 108 of the waveguide by an internal fastener 306. The internal fastener 306 could include a plastic fastener or a metal fastener.


The waveguide 102 can be formed using a combination of one or more of the above techniques, and other techniques as well, for maintaining alignment and even separation between the two parts 106 and 108. The enhanced thickness 230 of the waveguide 102, resulting from the addition of a plurality of radiation slots 122 in the shape of a horn 124 as shown in FIG. 2-3, provides increased structural stability for the waveguide 102 and increased efficacy of the external fastener 304 and internal fastener 306 in keeping part one 106 secured to part two 108 of the waveguide 102.



FIG. 4 illustrates different shapes of horns 400 in accordance with techniques, systems, apparatuses, and methods of this disclosure. The individual radiation slots 122, as shown in FIGS. 1, 2-1, 2-2, and 2-3, may include different horn shapes. For example, FIG. 4 includes an example of a radiation slot 122-1 in the shape of a horn 124-1 where the horn 124-1 is a triangular pyramid horn 402. Another example of a radiation slot 122-2 is in the shape of a horn 124-2 where the horn 124-2 is a square pyramid horn 404. A radiation slot 122-3 in the shape of a horn 124-3 where the horn 124-3 is a pentagonal pyramid horn 406. A radiation slot 122-4 in the shape of a horn 124-4 where the horn 124-4 is a hexagonal pyramid horn 408. A radiation slot 122-5 in the shape of a horn 124-5 where the horn 124-5 is a circular pyramid horn 410. Lastly, shown is a radiation slot 122-6 in the shape of a horn 124-6 where the horn 124-6 is a rectangular pyramid horn 412. The waveguide 102, as shown in FIGS. 1, 2-1, 2-2, and 2-3 may utilize the same horn structure for each radiation slot (e.g. each radiation slot is a pentagonal pyramid horn). Alternatively, the waveguide 102, as shown in FIGS. 1, 2-1, 2-2, and 2-3 may utilize a variety of horn structures for the radiation slots (e.g. some of the horn structures are in the shape of a triangular pyramid horn 402 and some of the horn structures are in a different shape as the triangular pyramid horn 402). In any case, the size and shape of the horns 124-1, 124-2, 124-3, 124-4, 124-4, 124-5, or 124-6, including any of the horn shapes (402, 404, 406, 408, 410, and 412), may be selected to be easy to manufacture at a millimeter-sized or smaller dimension, while still achieving desired antenna effects.


Example Method



FIG. 5 depicts an example method that can be used for manufacturing a two-part folded waveguide with horns, in accordance with techniques, systems, apparatuses, and methods of this disclosure. The process 500 is shown as a set of operations 502, 504, and through 506, which are performed in, but not limited to, the order or combinations in which the operations are shown or described. Further, any of the operations 502, 504 and 506 may be repeated, combined, or reorganized to provide other methods. The techniques are not limited to performance by one entity or multiple entities.


At operation 502, each part of a two-part waveguide with horns is formed. For example, the two parts of the two-part folded waveguide with horns may be stamped, etched, cut, machined, cast, molded, or formed in some other way as a result of the increased stability provided by the horns. At operation 504, each part of the two parts of the waveguide with horns are aligned. Optimal alignment ensures the waveguide operates without suffering from gradient lobes resulting from manufacturing defects. At operation 506, each part of the two parts of the waveguide with horns are secured. The two parts of the two-part folded waveguide with horns may be secured by an external fastener or internal fastener including a plastic fastener, a metal fastener, or a double-sided adhesive.


In aspects, the method may include manufacturing two parts of a two-part folded waveguide with horns having multiple surfaces that define a channel by at least forming a first part of the waveguide. The first part of the waveguide includes a first surface from one of the multiple surfaces. The first surface is shown having a folding or a sinusoidal shape that folds back and forth about a longitudinal axis that extends along the longitudinal axis of the first part. The waveguide also possesses a plurality of radiation slots, each of the radiation slots is in a shape of a horn. The horn is configured to form a respective hole extending through the first surface and into the channel. The horn can let electromagnetic energy escape the channel as the waveguide filters the electromagnetic energy to be within a specific frequency for the channel.


The first part of the waveguide possess at least one second surface from the multiple surfaces. The second surface is perpendicular to the first surface and is configured to define an upper half of walls of the channel that are normal to the first surface. The first part also includes a first feature at one end of the waveguide that defines a portion of a rectangular opening in the longitudinal direction and through to the channel.


A second part of the waveguide may be arranged adjacent to and parallel with the first part. The second part of the waveguide includes a third surface from the multiple surfaces. The third surface may be parallel to the first surface and may include the same sinusoidal shape as the first surface. The second part of the waveguide includes at least a fourth surface from the multiple surfaces between the second surface and the third surface. The fourth surface being perpendicular to the first surface and the third surface, the fourth surface defining a lower half of the walls of the channel. The second part of the waveguide includes a second feature at the same end of the waveguide as the first feature, the second feature defining a remaining portion of the rectangular opening that is not defined by the first feature.


In additional aspects, the method may include arranging the second part of the waveguide to be adjacent to and parallel with the first part of the waveguide. The first part of the waveguide is oriented with the second part of the waveguide to align the first feature of the first part of the waveguide with the second feature of the second part of the waveguide. The upper half of the walls of the channel that are normal to the first surface of the first part of the waveguide are aligned with the lower half of the walls of the channel that are perpendicular to the third surface to cause the sinusoidal shape of the first and second parts of the waveguide to be aligned in parallel. Arranging the second part of the waveguide to be adjacent to and parallel with the first part of the waveguide may include evenly separating the first part of the waveguide from the second part of the waveguide by a layer of material measuring less than twenty percent of a total size of the channel defined by the lower and upper halves of the walls.


The first part of the waveguide may be secured to the second part of the waveguide with a fastener that maintains the first part and second part of the waveguide in a parallel arrangement. The fastener may be an external fastener or an internal fastener. The fastener may be a plastic fastener or a metal fastener. The first part of the waveguide may be secured to the second part of the waveguide by an adhesive bond between the second surface and the fourth surface. The first part of the waveguide and the second part of the waveguide may be secured through an adhesive bond between the second surface and the fourth surface. The adhesive bond may be a dielectric, an epoxy, a glue, or a double-sided tape.


Example Graph



FIG. 6 illustrates a graph 600 demonstrating antenna characteristics in accordance with techniques, systems, apparatuses, and methods of this disclosure. For example, the graph 600 includes a reflection coefficient (dB(S(1,1)) 602 on the y-axis as well as a frequency (GHz) 604 on the x-axis within a frequency range 606. A small reflection coefficient 602 is indicative of low overall reflectance. In aspects, an effective waveguide demonstrates a reflection coefficient below −10 dB. In the graph 600, a two-part folded waveguide with horns demonstrates a reflection coefficient below −10 dB between the frequency range 606, which is from 75.50 GHz and 77.50 GHz.



FIG. 7 illustrates another graph 700 demonstrating antenna characteristics in accordance with techniques, systems, apparatuses, and methods of this disclosure. For example, the graph 700 includes a normalized decibel level (dB10normalize(GainTotal)) 702 indicating antenna gain on the y-axis as well as a Theta (deg) 704 of a bore sight on the x-axis. The graph 700 includes a wide beam pattern 706 and a narrow beam pattern 708. In aspects, an effective waveguide demonstrates low side lobes (e.g. less than −20 dB). In the graph 700, a two-part folded waveguide with horns, demonstrates low side lobes below −20 dB for a bore sight of 0 degrees.


ADDITIONAL EXAMPLES

In the following section, additional examples of a folded waveguide for antenna are provided.


Example 1

An apparatus comprising a two-part folded waveguide having multiple surfaces that define a channel, the two-part folded waveguide including: a first part of the waveguide comprising: a first surface from the multiple surfaces, the first surface having: a sinusoidal shape that folds back and forth about a longitudinal axis that extends in a longitudinal direction through the channel; and a plurality of radiation slots, each of the radiation slots in a shape of a horn that forms a respective hole extending through the first surface and into the channel; at least one second surface from the multiple surfaces, the second surface being perpendicular to the first surface to define an upper half of walls of the channel that are normal to the first surface; and a first feature at one end of the waveguide, the first feature defining a portion of a rectangular opening in the longitudinal direction and through to the channel; a second part of the waveguide arranged adjacent to and parallel with the first part, the second part of the waveguide comprising: a third surface from the multiple surfaces, the third surface being parallel to the first surface and having the same sinusoidal shape as the first surface; at least one fourth surface from the multiple surfaces between the second surface and the third surface, the fourth surface being perpendicular to the first surface and the third surface, the fourth surface defining a lower half of the walls of the channel; and a second feature at the same end of the waveguide as the first feature, the second feature defining a remaining portion of the rectangular opening that is not defined by the first feature.


Example 2

The apparatus of any preceding example, wherein the first part of the waveguide is evenly separated from the second part of the waveguide by a layer of material.


Example 3

The apparatus of any preceding example, wherein the first part of the waveguide is evenly separated from the second part of the waveguide by a layer of material measuring less than twenty percent of a total size of the channel defined by the lower and upper halves of the walls.


Example 4

The apparatus of any preceding example, wherein the layer of material separating the first part of the waveguide from the second part of the waveguide comprises air.


Example 5

The apparatus of any preceding example, wherein the layer of material separating the first part of the waveguide from the second part of the waveguide comprises a dielectric material other than air configured to maintain the first part of the waveguide at a fixed position relative to the second part of the waveguide.


Example 6

The apparatus of any preceding example, wherein the first part of the waveguide is secured to the second part of the waveguide with a metal fastener configured to maintain the first part of the waveguide at a fixed position relative the second part of the waveguide.


Example 7

The apparatus of any preceding example, wherein the first part of the waveguide is secured to the second part of the waveguide with a plastic fastener configured to maintain the first part of the waveguide at a fixed position relative to the second part of the waveguide.


Example 8

The apparatus of any preceding example, wherein the first part of the waveguide is secured to the second part of the waveguide with a double-sided adhesive configured to maintain the first part of the waveguide at a fixed position relative to the second part of the waveguide.


Example 9

The apparatus of any preceding example, wherein the two-part folded waveguide comprises one or more materials including plastic, metal, composite materials, or wood.


Example 10

The apparatus of any preceding example, wherein the plurality of radiation slots comprises different horn shapes, including: a triangular shaped pyramid horn; a square shaped pyramid horn; a pentagonal shaped pyramid horn; a hexagonal shaped pyramid horn; a circular shaped pyramid horn; or a rectangular shaped pyramid horn.


Example 11

The apparatus of any preceding example, wherein the plurality of radiation slots are evenly distributed between the rectangular opening and an end of the waveguide arranged opposite the rectangular opening along the longitudinal axis that extends in the longitudinal direction through the channel.


Example 12

The apparatus of any preceding example, wherein a common distance between each horn along the longitudinal axis is λ/2.


Example 13

A method, the method comprising: manufacturing two parts of a two-part


folded waveguide with horns having multiple surfaces that define a channel by at least: forming a first part of the waveguide such that the first part includes: a first surface from the multiple surfaces, the first surface having: a sinusoidal shape that folds back and forth about a longitudinal axis that extends in a longitudinal direction through the channel; and a plurality of radiation slots, each of the radiation slots in a shape of a horn that forms a respective hole extending through the first surface and into the channel; at least one second surface from the multiple surfaces, the second surface being perpendicular to the first surface to define an upper half of walls of the channel that are normal to the first surface; and a first feature at one end of the waveguide, the first feature defining a portion of a rectangular opening in the longitudinal direction and through to the channel; forming a second part of the waveguide such that the second part of the waveguide includes: a third surface from the multiple surfaces, the third surface having the same sinusoidal shape as the first surface; at least one fourth surface from the multiple surfaces, the fourth surface being perpendicular to the third surface, the fourth surface defining a lower half of the walls of the channel; and a second feature at the same end of the waveguide as the first feature, the second feature defining a remaining portion of the rectangular opening that is not defined by the first feature; and arranging the second part of the waveguide to be adjacent to and parallel with the first part of the waveguide by: orientating the first part of the waveguide with the second part of the waveguide to align the first feature of the first part of the waveguide with the second feature of the second part of the waveguide; and aligning the upper half of the walls of the channel that are normal to the first surface of the first part of the waveguide with the lower half of the walls of the channel that are perpendicular to the third surface to cause the sinusoidal shape of the first and second parts of the waveguide to be aligned in parallel.


Example 14

The method of any preceding example, wherein arranging the second part of the waveguide to be adjacent to and parallel with the first part of the waveguide comprises evenly separating the first part of the waveguide from the second part of the waveguide by a layer of material measuring less than twenty percent of a total size of the channel defined by the lower and upper halves of the walls.


Example 15

The method of any preceding example, wherein forming each of the first part and the second part of the waveguide comprises using injection molding.


Example 16

The method of any preceding example, further comprising: securing the first part of the waveguide to the second part of the waveguide in response to the arranging.


Example 17

The method of any preceding example, wherein securing the first part of the waveguide to the second part of the waveguide comprises securing with a fastener maintains the first and second parts of the waveguide in a parallel arrangement.


Example 18

The method of any preceding example, wherein a fastener comprises at least one of a plastic fastener or a metal fastener.


Example 19

The method of any preceding example, wherein securing the first part of the waveguide and the second part of the waveguide comprises securing with causing an adhesive bond between the second surface and the fourth surface.


Example 20

The method of any preceding example, wherein causing the adhesive bond comprises using a dielectric, an epoxy, a glue, or a double-sided tape.


CONCLUSION

While various embodiments of the disclosure are described in the foregoing description and shown in the drawings, it is to be understood that this disclosure is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the disclosure as defined by the following claims.


The use of “or” and grammatically related terms indicates non-exclusive alternatives without limitation unless the context clearly dictates otherwise. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c).

Claims
  • 1. An apparatus comprising a two-part folded waveguide having multiple surfaces that define a channel for a desired wavelength λ, the two-part folded waveguide including: a first part of the waveguide comprising: a first surface from the multiple surfaces, the first surface having:a sinusoidal shape that folds back and forth about a longitudinal axis that extends in a longitudinal direction through the channel; anda plurality of radiation slots, each of the radiation slots in a shape of a horn that forms a respective hole extending through the first surface and into the channel, wherein a common distance between each horn along the longitudinal axis is one half the desired wavelength λ;at least one second surface from the multiple surfaces, the second surface being perpendicular to the first surface to define an upper half of walls of the channel that are normal to the first surface; andone end of the first part defining a portion of a rectangular opening in the longitudinal direction and extending through to the channel;a second part of the waveguide arranged adjacent to and parallel with the first part, the second part of the waveguide comprising: a third surface from the multiple surfaces, the third surface being parallel to the first surface and having the same sinusoidal shape as the first surface;at least one fourth surface from the multiple surfaces between the second surface and the third surface, the fourth surface being perpendicular to the first surface and the third surface, the fourth surface defining a lower half of the walls of the channel; andone end of the second part defining a remaining portion of the rectangular opening that is not defined by the first part.
  • 2. The apparatus of claim 1, wherein the first part of the waveguide is evenly separated from the second part of the waveguide by a layer of material measuring less than twenty percent of a total size of the channel defined by the lower and upper halves of the walls.
  • 3. The apparatus of claim 1, wherein the first part of the waveguide is evenly separated from the second part of the waveguide by a layer of material.
  • 4. The apparatus of claim 3, wherein the layer of material separating the first part of the waveguide from the second part of the waveguide comprises air.
  • 5. The apparatus of claim 3, wherein the layer of material separating the first part of the waveguide from the second part of the waveguide comprises a dielectric material other than air configured to maintain the first part of the waveguide at a fixed position relative to the second part of the waveguide.
  • 6. The apparatus of claim 3, wherein the first part of the waveguide is secured to the second part of the waveguide with a metal fastener configured to maintain the first part of the waveguide at a fixed position relative the second part of the waveguide.
  • 7. The apparatus of claim 3, wherein the first part of the waveguide is secured to the second part of the waveguide with a plastic fastener configured to maintain the first part of the waveguide at a fixed position relative to the second part of the waveguide.
  • 8. The apparatus of claim 3, wherein the first part of the waveguide is secured to the second part of the waveguide with a double-sided adhesive configured to maintain the first part of the waveguide at a fixed position relative to the second part of the waveguide.
  • 9. The apparatus of claim 1, wherein the two-part folded waveguide comprises one or more materials including plastic, metal, composite materials, or wood.
  • 10. The apparatus of claim 1, wherein the plurality of radiation slots comprises different horn shapes, including: a triangular shaped pyramid horn;a square shaped pyramid horn;a pentagonal shaped pyramid horn;a hexagonal shaped pyramid horn;a circular shaped pyramid horn; ora rectangular shaped pyramid horn.
  • 11. The apparatus of claim 1, wherein the plurality of radiation slots are evenly distributed between the rectangular opening and another end of the first part arranged opposite the rectangular opening along the longitudinal axis that extends in the longitudinal direction through the channel.
  • 12. A method, the method comprising: manufacturing two parts of a two-part folded waveguide with horns having multiple surfaces that define a channel for a desired wavelength λ, by at least:forming a first part of the waveguide such that the first part includes: a first surface from the multiple surfaces, the first surface having:a sinusoidal shape that folds back and forth about a longitudinal axis that extends in a longitudinal direction through the channel; anda plurality of radiation slots, each of the radiation slots in a shape of a horn that forms a respective hole extending through the first surface and into the channel, wherein a common distance between each horn along the longitudinal axis is one half the desired wavelength λ;at least one second surface from the multiple surfaces, the second surface being perpendicular to the first surface to define an upper half of walls of the channel that are normal to the first surface; andone end of the first part defining a portion of a rectangular opening in the longitudinal direction and extending through to the channel;forming a second part of the waveguide such that the second part of the waveguide includes: a third surface from the multiple surfaces, the third surface having the same sinusoidal shape as the first surface;at least one fourth surface from the multiple surfaces, the fourth surface being perpendicular to the third surface, the fourth surface defining a lower half of the walls of the channel; andone end of the second part defining a remaining portion of the rectangular opening that is not defined by the first part; andarranging the second part of the waveguide to be adjacent to and parallel with the first part of the waveguide by: orientating the first part of the waveguide with the second part of the waveguide to align the portion of the rectangular opening with the remaining portion of the rectangular opening; andaligning the upper half of the walls of the channel that are normal to the first surface of the first part of the waveguide with the lower half of the walls of the channel that are perpendicular to the third surface to cause the sinusoidal shape of the first and second parts of the waveguide to be aligned in parallel.
  • 13. The method of claim 12, wherein arranging the second part of the waveguide to be adjacent to and parallel with the first part of the waveguide comprises evenly separating the first part of the waveguide from the second part of the waveguide by a layer of material measuring less than twenty percent of a total size of the channel defined by the lower and upper halves of the walls.
  • 14. The method of claim 13, wherein securing the first part of the waveguide and the second part of the waveguide comprises securing with causing an adhesive bond between the second surface and the fourth surface.
  • 15. The method of claim 14, wherein causing the adhesive bond comprises using a dielectric, an epoxy, a glue, or a double-sided tape.
  • 16. The method of claim 12, further comprising: securing the first part of the waveguide to the second part of the waveguide in response to the arranging.
  • 17. The method of claim 16, wherein securing the first part of the waveguide to the second part of the waveguide comprises securing with a fastener maintains the first and second parts of the waveguide in a parallel arrangement.
  • 18. The method of claim 16, wherein a fastener comprises at least one of a plastic fastener or a metal fastener.
  • 19. The method of claim 12, wherein forming each of the first part and the second part of the waveguide comprises using injection molding.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 63/188,265, filed May 13, 2021, the disclosure of which is hereby incorporated by reference in its entirety herein.

US Referenced Citations (284)
Number Name Date Kind
2851686 Hagaman Sep 1958 A
3029432 Hansen Apr 1962 A
3032762 Kerr May 1962 A
3328800 Algeo Jun 1967 A
3462713 Knerr Aug 1969 A
3473162 Veith Oct 1969 A
3579149 Ramsey May 1971 A
3594806 Black et al. Jul 1971 A
3597710 Levy Aug 1971 A
3852689 Watson Dec 1974 A
4157516 Van De Grijp Jun 1979 A
4291312 Kaloi Sep 1981 A
4453142 Murphy Jun 1984 A
4562416 Sedivec Dec 1985 A
4590480 Nikolayuk et al. May 1986 A
4839663 Kurtz Jun 1989 A
5030965 Park et al. Jul 1991 A
5047738 Wong et al. Sep 1991 A
5065123 Heckaman et al. Nov 1991 A
5068670 Maoz Nov 1991 A
5113197 Luh May 1992 A
5337065 Bonnet et al. Aug 1994 A
5350499 Shibaike et al. Sep 1994 A
5541612 Josefsson Jul 1996 A
5638079 Kastner et al. Jun 1997 A
5923225 Santos Jul 1999 A
5926147 Sehm et al. Jul 1999 A
5982256 Uchimura et al. Nov 1999 A
5986527 Ishikawa et al. Nov 1999 A
6072375 Adkins et al. Jun 2000 A
6166701 Park et al. Dec 2000 A
6414573 Swineford et al. Jul 2002 B1
6489855 Kitamori et al. Dec 2002 B1
6535083 Hageman et al. Mar 2003 B1
6622370 Sherman et al. Sep 2003 B1
6788918 Saitoh et al. Sep 2004 B2
6794950 Du Toit et al. Sep 2004 B2
6859114 Eleftheriades et al. Feb 2005 B2
6867660 Kitamori et al. Mar 2005 B2
6958662 Salmela et al. Oct 2005 B1
6992541 Wright et al. Jan 2006 B2
7002511 Ammar et al. Feb 2006 B1
7091919 Bannon Aug 2006 B2
7142165 Sanchez et al. Nov 2006 B2
7420442 Forman Sep 2008 B1
7439822 Shimura et al. Oct 2008 B2
7495532 McKinzie, III Feb 2009 B2
7498994 Vacanti Mar 2009 B2
7626476 Kim et al. Dec 2009 B2
7659799 Jun et al. Feb 2010 B2
7886434 Forman Feb 2011 B1
7973616 Shijo et al. Jul 2011 B2
7994879 Kim et al. Aug 2011 B2
8013694 Hiramatsu et al. Sep 2011 B2
8089327 Margomenos et al. Jan 2012 B2
8159316 Miyazato et al. Apr 2012 B2
8395552 Geiler et al. Mar 2013 B2
8451175 Gummalla et al. May 2013 B2
8451189 Fluhler May 2013 B1
8576023 Buckley et al. Nov 2013 B1
8604990 Chen et al. Dec 2013 B1
8692731 Lee et al. Apr 2014 B2
8717124 Vanhille et al. May 2014 B2
8803638 Kildal Aug 2014 B2
8948562 Norris et al. Feb 2015 B2
9007269 Lee et al. Apr 2015 B2
9203139 Zhu et al. Dec 2015 B2
9203155 Choi et al. Dec 2015 B2
9246204 Kabakian Jan 2016 B1
9258884 Saito Feb 2016 B2
9356238 Norris et al. May 2016 B2
9368878 Chen et al. Jun 2016 B2
9450281 Kim Sep 2016 B2
9537212 Rosen et al. Jan 2017 B2
9647313 Marconi et al. May 2017 B2
9653773 Ferrari et al. May 2017 B2
9653819 Izadian May 2017 B1
9673532 Cheng et al. Jun 2017 B2
9806393 Kildal et al. Oct 2017 B2
9806431 Izadian Oct 2017 B1
9813042 Xue et al. Nov 2017 B2
9843301 Rodgers et al. Dec 2017 B1
9882288 Black et al. Jan 2018 B2
9935065 Baheti et al. Apr 2018 B1
9991606 Kirino et al. Jun 2018 B2
9997842 Kirino et al. Jun 2018 B2
10027032 Kirino et al. Jul 2018 B2
10042045 Kirino et al. Aug 2018 B2
10090600 Kirino et al. Oct 2018 B2
10114067 Am et al. Oct 2018 B2
10153533 Kirino Dec 2018 B2
10158158 Kirino et al. Dec 2018 B2
10164318 Seok et al. Dec 2018 B2
10164344 Kirino et al. Dec 2018 B2
10186787 Wang et al. Jan 2019 B1
10218078 Kirino et al. Feb 2019 B2
10230173 Kirino et al. Mar 2019 B2
10263310 Kildal et al. Apr 2019 B2
10283832 Chayat et al. May 2019 B1
10312596 Gregoire Jun 2019 B2
10315578 Kim et al. Jun 2019 B2
10320083 Kirino et al. Jun 2019 B2
10333227 Kirino et al. Jun 2019 B2
10374323 Kamo et al. Aug 2019 B2
10381317 Maaskant et al. Aug 2019 B2
10381741 Kirino et al. Aug 2019 B2
10439298 Kirino et al. Oct 2019 B2
10468736 Mangaiahgari Nov 2019 B2
10505282 Lilja Dec 2019 B2
10534061 Vassilev et al. Jan 2020 B2
10559889 Kirino et al. Feb 2020 B2
10594045 Kirino et al. Mar 2020 B2
10601144 Kamo et al. Mar 2020 B2
10608345 Kirino et al. Mar 2020 B2
10613216 Vacanti et al. Apr 2020 B2
10622696 Kamo et al. Apr 2020 B2
10627502 Kirino et al. Apr 2020 B2
10649461 Han et al. May 2020 B2
10651138 Kirino et al. May 2020 B2
10651567 Kamo et al. May 2020 B2
10658760 Kamo et al. May 2020 B2
10670810 Sakr et al. Jun 2020 B2
10705294 Guerber et al. Jul 2020 B2
10707584 Kirino et al. Jul 2020 B2
10714802 Kirino et al. Jul 2020 B2
10727561 Kirino et al. Jul 2020 B2
10727611 Kirino et al. Jul 2020 B2
10763590 Kirino et al. Sep 2020 B2
10763591 Kirino et al. Sep 2020 B2
10775573 Hsu et al. Sep 2020 B1
10811373 Zaman et al. Oct 2020 B2
10826147 Sikina et al. Nov 2020 B2
10833382 Sysouphat Nov 2020 B2
10833385 Mangaiahgari et al. Nov 2020 B2
10892536 Fan et al. Jan 2021 B2
10944184 Shi et al. Mar 2021 B2
10957971 Doyle et al. Mar 2021 B2
10957988 Kirino et al. Mar 2021 B2
10962628 Laifenfeld et al. Mar 2021 B1
10971824 Baumgartner et al. Apr 2021 B2
10983194 Patel et al. Apr 2021 B1
10985434 Wagner et al. Apr 2021 B2
10992056 Kamo et al. Apr 2021 B2
11061110 Kamo et al. Jul 2021 B2
11088432 Seok et al. Aug 2021 B2
11088464 Sato et al. Aug 2021 B2
11114733 Doyle et al. Sep 2021 B2
11121441 Rmili et al. Sep 2021 B1
11121475 Yang et al. Sep 2021 B2
11169325 Guerber et al. Nov 2021 B2
11171399 Alexanian et al. Nov 2021 B2
11196171 Doyle et al. Dec 2021 B2
11201414 Doyle et al. Dec 2021 B2
11249011 Challener Feb 2022 B2
11283162 Doyle et al. Mar 2022 B2
11289787 Yang Mar 2022 B2
11349183 Rahiminejad et al. May 2022 B2
11349220 Alexanian et al. May 2022 B2
11378683 Alexanian et al. Jul 2022 B2
11411292 Kirino Aug 2022 B2
11444364 Shi Sep 2022 B2
11495871 Vosoogh et al. Nov 2022 B2
11563259 Alexanian et al. Jan 2023 B2
11611138 Ogawa et al. Mar 2023 B2
11616282 Yao et al. Mar 2023 B2
11626652 Vilenskiy et al. Apr 2023 B2
20020021197 Elco Feb 2002 A1
20030052828 Scherzer et al. Mar 2003 A1
20040041663 Uchimura et al. Mar 2004 A1
20040069984 Estes et al. Apr 2004 A1
20040090290 Teshirogi et al. May 2004 A1
20040174315 Miyata Sep 2004 A1
20050146474 Bannon Jul 2005 A1
20050237253 Kuo et al. Oct 2005 A1
20060038724 Tikhov et al. Feb 2006 A1
20060113598 Chen et al. Jun 2006 A1
20060158382 Nagai Jul 2006 A1
20070013598 Artis et al. Jan 2007 A1
20070054064 Ohmi et al. Mar 2007 A1
20070103381 Upton May 2007 A1
20080129409 Nagaishi et al. Jun 2008 A1
20080150821 Koch et al. Jun 2008 A1
20090040132 Sridhar et al. Feb 2009 A1
20090207090 Pettus et al. Aug 2009 A1
20090243762 Chen et al. Oct 2009 A1
20090243766 Miyagawa et al. Oct 2009 A1
20090300901 Artis et al. Dec 2009 A1
20100134376 Margomenos et al. Jun 2010 A1
20100321265 Yamaguchi et al. Dec 2010 A1
20110181482 Adams et al. Jul 2011 A1
20120013421 Hayata Jan 2012 A1
20120050125 Leiba et al. Mar 2012 A1
20120056776 Shijo et al. Mar 2012 A1
20120068316 Ligander Mar 2012 A1
20120163811 Doany et al. Jun 2012 A1
20120194399 Bily et al. Aug 2012 A1
20120242421 Robin et al. Sep 2012 A1
20120256796 Leiba Oct 2012 A1
20120280770 Abhari et al. Nov 2012 A1
20130057358 Anthony et al. Mar 2013 A1
20130082801 Rofougaran et al. Apr 2013 A1
20130300602 Zhou et al. Nov 2013 A1
20140015709 Shijo et al. Jan 2014 A1
20140091884 Flatters Apr 2014 A1
20140106684 Burns et al. Apr 2014 A1
20140327491 Kim et al. Nov 2014 A1
20150097633 Devries et al. Apr 2015 A1
20150229017 Suzuki et al. Aug 2015 A1
20150229027 Sonozaki et al. Aug 2015 A1
20150263429 Vahidpour et al. Sep 2015 A1
20150333726 Xue et al. Nov 2015 A1
20150357698 Kushta Dec 2015 A1
20150364804 Tong et al. Dec 2015 A1
20150364830 Tong et al. Dec 2015 A1
20160043455 Seler et al. Feb 2016 A1
20160049714 Ligander et al. Feb 2016 A1
20160056541 Tageman et al. Feb 2016 A1
20160118705 Tang et al. Apr 2016 A1
20160126637 Uemichi May 2016 A1
20160195612 Shi Jul 2016 A1
20160204495 Takeda et al. Jul 2016 A1
20160211582 Saraf Jul 2016 A1
20160276727 Dang et al. Sep 2016 A1
20160293557 Topak et al. Oct 2016 A1
20160301125 Kim et al. Oct 2016 A1
20170003377 Menge Jan 2017 A1
20170012335 Boutayeb Jan 2017 A1
20170084554 Dogiamis et al. Mar 2017 A1
20170288313 Chung et al. Oct 2017 A1
20170294719 Tatomir Oct 2017 A1
20170324135 Blech et al. Nov 2017 A1
20180013208 Izadian et al. Jan 2018 A1
20180032822 Frank et al. Feb 2018 A1
20180123245 Toda et al. May 2018 A1
20180131084 Park et al. May 2018 A1
20180212324 Tatomir Jul 2018 A1
20180226709 Mangaiahgari Aug 2018 A1
20180233465 Spella et al. Aug 2018 A1
20180254563 Sonozaki et al. Sep 2018 A1
20180284186 Chadha et al. Oct 2018 A1
20180301819 Kirino et al. Oct 2018 A1
20180301820 Bregman et al. Oct 2018 A1
20180343711 Wixforth et al. Nov 2018 A1
20180351261 Kamo et al. Dec 2018 A1
20180375185 Kirino et al. Dec 2018 A1
20190006743 Kirino et al. Jan 2019 A1
20190013563 Takeda et al. Jan 2019 A1
20190057945 Maaskant et al. Feb 2019 A1
20190109361 Ichinose et al. Apr 2019 A1
20190115644 Wang et al. Apr 2019 A1
20190187247 Zadian et al. Jun 2019 A1
20190245276 Li et al. Aug 2019 A1
20190252778 Duan Aug 2019 A1
20190260137 Watanabe et al. Aug 2019 A1
20190324134 Cattle Oct 2019 A1
20200021001 Mangaiahgairi Jan 2020 A1
20200044360 Kamo et al. Feb 2020 A1
20200059002 Renard et al. Feb 2020 A1
20200064483 Li et al. Feb 2020 A1
20200076086 Cheng et al. Mar 2020 A1
20200106171 Shepeleva et al. Apr 2020 A1
20200112077 Kamo et al. Apr 2020 A1
20200166637 Hess et al. May 2020 A1
20200203849 Lim et al. Jun 2020 A1
20200212594 Kirino et al. Jul 2020 A1
20200235453 Lang Jul 2020 A1
20200284907 Gupta et al. Sep 2020 A1
20200287293 Shi et al. Sep 2020 A1
20200319293 Kuriyama et al. Oct 2020 A1
20200343612 Shi Oct 2020 A1
20200346581 Lawson et al. Nov 2020 A1
20200373678 Park et al. Nov 2020 A1
20210028528 Alexanian et al. Jan 2021 A1
20210036393 Mangaiahgari Feb 2021 A1
20210104818 Li et al. Apr 2021 A1
20210110217 Gunel Apr 2021 A1
20210159577 Carlred et al. May 2021 A1
20210218154 Shi et al. Jul 2021 A1
20210242581 Rossiter et al. Aug 2021 A1
20210249777 Alexanian et al. Aug 2021 A1
20210305667 Bencivenni Sep 2021 A1
20220094071 Doyle et al. Mar 2022 A1
20220109246 Emanuelsson et al. Apr 2022 A1
20220196794 Foroozesh et al. Jun 2022 A1
Foreign Referenced Citations (75)
Number Date Country
2654470 Dec 2007 CA
1254446 May 2000 CN
1620738 May 2005 CN
2796131 Jul 2006 CN
101584080 Nov 2009 CN
201383535 Jan 2010 CN
201868568 Jun 2011 CN
102157787 Aug 2011 CN
102420352 Apr 2012 CN
103326125 Sep 2013 CN
203277633 Nov 2013 CN
103490168 Jan 2014 CN
103515682 Jan 2014 CN
102142593 Jun 2014 CN
104101867 Oct 2014 CN
104900956 Sep 2015 CN
104993254 Oct 2015 CN
105071019 Nov 2015 CN
105609909 May 2016 CN
105680133 Jun 2016 CN
105958167 Sep 2016 CN
107317075 Nov 2017 CN
108258392 Jul 2018 CN
109286081 Jan 2019 CN
109643856 Apr 2019 CN
109980361 Jul 2019 CN
110085990 Aug 2019 CN
209389219 Sep 2019 CN
110401022 Nov 2019 CN
111123210 May 2020 CN
111480090 Jul 2020 CN
108376821 Oct 2020 CN
110474137 Nov 2020 CN
109326863 Dec 2020 CN
112241007 Jan 2021 CN
212604823 Feb 2021 CN
112986951 Jun 2021 CN
112290182 Jul 2021 CN
113193323 Oct 2021 CN
214706247 Nov 2021 CN
112017006415 Sep 2019 DE
102019200893 Jul 2020 DE
0174579 Mar 1986 EP
0818058 Jan 1998 EP
2267841 Dec 2010 EP
2500978 Sep 2012 EP
2843758 Mar 2015 EP
2766224 Dec 2018 EP
3460903 Mar 2019 EP
3785995 Mar 2021 EP
3862773 Aug 2021 EP
4089840 Nov 2022 EP
893008 Apr 1962 GB
2463711 Mar 2010 GB
2489950 Oct 2012 GB
2000183222 Jun 2000 JP
2003198242 Jul 2003 JP
2003289201 Oct 2003 JP
5269902 Aug 2013 JP
2013187752 Sep 2013 JP
2015216533 Dec 2015 JP
100846872 May 2008 KR
1020080044752 May 2008 KR
20080105396 Dec 2008 KR
101092846 Dec 2011 KR
102154338 Sep 2020 KR
9934477 Jul 1999 WO
2013189513 Dec 2013 WO
2018003932 Jan 2018 WO
2018052335 Mar 2018 WO
2019085368 May 2019 WO
2020082363 Apr 2020 WO
2021072380 Apr 2021 WO
2022122319 Jun 2022 WO
2022225804 Oct 2022 WO
Non-Patent Literature Citations (71)
Entry
“Extended European Search Report”, EP Application No. 18153137.7, dated Jun. 15, 2018, 8 pages.
“Extended European Search Report”, EP Application No. 20166797, dated Sep. 16, 2020, 11 pages.
“Foreign Office Action”, CN Application No. 201810122408.4, dated Jun. 2, 2021, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/583,867, dated Feb. 18, 2020, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/427,769, dated Nov. 13, 2018, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/427,769, dated Jun. 28, 2019, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 16/583,867, dated Jul. 8, 2020, 8 Pages.
Jankovic, et al., “Stepped Bend Substrate Integrated Waveguide to Rectangular Waveguide Transitions”, Jun. 2016, 2 pages.
“Foreign Office Action”, CN Application No. 201810122408.4, dated Oct. 18, 2021, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/829,409, dated Oct. 14, 2021, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 17/061,675, dated Dec. 20, 2021, 4 pages.
Wang, et al., “Mechanical and Dielectric Strength of Laminated Epoxy Dielectric Graded Materials”, Mar. 2020, 15 pages.
“Extended European Search Report”, EP Application No. 23158037.4, dated Aug. 17, 2023, 9 pages.
“Extended European Search Report”, EP Application No. 23158947.4, dated Aug. 17, 2023, 11 pages.
“Foreign Office Action”, CN Application No. 202111550163.3, dated Jun. 17, 2023, 25 pages.
“Foreign Office Action”, CN Application No. 202111550448.7, dated Jun. 17, 2023, 19 pages.
“Foreign Office Action”, CN Application No. 202111551711.4, dated Jun. 17, 2023, 29 pages.
“Foreign Office Action”, CN Application No. 202111551878.0, dated Jun. 15, 2023, 20 pages.
“Foreign Office Action”, CN Application No. 202111563233.9, dated May 31, 2023, 15 pages.
“Foreign Office Action”, CN Application No. 202111652507.1, dated Jun. 26, 2023, 14 pages.
“Foreign Office Action”, CN Application No. 202210251362.2, dated Jun. 28, 2023, 15 pages.
Ghassemi, et al., “Millimeter-Wave Integrated Pyramidal Horn Antenna Made of Multilayer Printed Circuit Board (PCB) Process”, IEEE Transactions on Antennas and Propagation, vol. 60, No. 9, Sep. 2012, pp. 4432-4435.
Hausman, et al., “Termination Insensitive Mixers”, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), Dec. 19, 2011, 13 pages.
“Extended European Search Report”, EP Application No. 21211165.2, dated May 13, 2022, 12 pages.
“Extended European Search Report”, EP Application No. 21211167.8, dated May 19, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 21211168.6, dated May 13, 2022, 11 pages.
“Extended European Search Report”, EP Application No. 21211452.4, dated May 16, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 21211474.8, dated Apr. 20, 2022, 14 pages.
“Extended European Search Report”, EP Application No. 21211478.9, dated May 19, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 21216319.0, dated Jun. 10, 2022, 12 pages.
“WR-90 Waveguides”, Pasternack Enterprises, Inc., 2016, Retrieved from https://web.archive.org/web/20160308205114/http://www.pasternack.com:80/wr-90-waveguides-category.aspx, 2 pages.
Alhuwaimel, et al., “Performance Enhancement of a Slotted Waveguide Antenna by Utilizing Parasitic Elements”, Sep. 7, 2015, pp. 1303-1306.
Gray, et al., “Carbon Fibre Reinforced Plastic Slotted Waveguide Antenna”, Proceedings of Asia-Pacific Microwave Conference 2010, pp. 307-310.
Hausman, “Termination Insensitive Mixers”, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), Nov. 7, 2011, 13 pages.
Li, et al., “Millimetre-wave slotted array antenna based on double-layer substrate integrated waveguide”, Jun. 1, 2015, pp. 882-888.
Mak, et al., “A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application”, Dec. 12, 2017, pp. 6395-6402.
Mallahzadeh, et al., “A Low Cross-Polarization Slotted Ridged SIW Array Antenna Design With Mutual Coupling Considerations”, Jul. 17, 2015, pp. 4324-4333.
Rossello, et al., “Substrate Integrated Waveguide Aperture Coupled Patch Antenna Array for 24 GHz Wireless Backhaul and Radar Applications”, Nov. 16, 2014, 2 pages.
Shehab, et al., “Substrate-Integrated-Waveguide Power Dividers”, Oct. 15, 2019, pp. 27-38.
Wang, et al., “Low-loss frequency scanning planar array with hybrid feeding structure for low-altitude detection radar”, Sep. 13, 2019, pp. 6708-6711.
Wu, et al., “A Planar W-Band Large-Scale High-Gain Substrate-Integrated Waveguide Slot Array”, Feb. 3, 2020, pp. 6429-6434.
Xu, et al., “CPW Center-Fed Single-Layer SIW Slot Antenna Array for Automotive Radars”, Jun. 12, 2014, pp. 4528-4536.
Yu, et al., “Optimization and Implementation of SIW Slot Array for Both Medium- and Long-Range 77 GHz Automotive Radar Application”, IEEE Transactions on Antennas and Propagation, vol. 66, No. 7, Jul. 2018, pp. 3769-3774.
“Extended European Search Report”, EP Application No. 20155296.5, dated Jul. 13, 2020, 12 pages.
“Extended European Search Report”, EP Application No. 21212703.9, dated May 3, 2022, 13 pages.
“Extended European Search Report”, EP Application No. 21215901.6, dated Jun. 9, 2022, 8 pages.
“Extended European Search Report”, EP Application No. 22160898.7, dated Aug. 4, 2022, 11 pages.
“Extended European Search Report”, EP Application No. 22183888.1, dated Dec. 20, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 22183892.3, dated Dec. 2, 2022, 8 pages.
“Extended European Search Report”, EP Application No. 22184924.3, dated Dec. 2, 2022, 13 pages.
“Foreign Office Action”, CN Application No. 202010146513.9, dated Feb. 7, 2022, 14 pages.
Bauer, et al., “A wideband transition from substrate integrated waveguide to differential microstrip lines in multilayer substrates”, Sep. 2010, pp. 811-813.
Chaloun, et al., “A Wideband 122 GHz Cavity-Backed Dipole Antenna for Millimeter-Wave Radar Altimetry”, 2020 14th European Conference on Antennas and Propagation (EUCAP), Mar. 15, 2020, 4 pages.
Deutschmann, et al., “A Full W-Band Waveguide-to-Differential Microstrip Transition”, Jun. 2019, pp. 335-338.
Furtula, et al., “Waveguide Bandpass Filters for Millimeter-Wave Radiometers”, Journal of Infrared, Millimeter and Terahertz Waves, 2013, 9 pages.
Giese, et al., “Compact Wideband Single-ended and Differential Microstrip-to-waveguide Transitions at W-band”, Jul. 2015, 4 pages.
Hansen, et al., “D-Band FMCW Radar Sensor for Industrial Wideband Applications with Fully-Differential MMIC-to-RWG Interface in SIW”, 2021 IEEE/MTT-S International Microwave Symposium, Jun. 7, 2021, pp. 815-818.
Hasan, et al., “F-Band Differential Microstrip Patch Antenna Array and Waveguide to Differential Microstrip Line Transition for FMCW Radar Sensor”, IEEE Sensors Journal, vol. 19, No. 15, Aug. 1, 2019, pp. 6486-6496.
Huang, et al., “The Rectangular Waveguide Board Wall Slot Array Antenna Integrated with One Dimensional Subwavelength Periodic Corrugated Grooves and Artificially Soft Surface Structure”, Dec. 20, 2008, 10 pages.
Lin, et al., “A THz Waveguide Bandpass Filter Design Using an Artificial Neural Network”, Micromachines 13(6), May 2022, 11 pages.
Ogiwara, et al., “2-D MoM Analysis of the Choke Structure for Isolation Improvement between Two Waveguide Slot Array Antennas”, Proceedings of Asia-Pacific Microwave Conference 2007, 4 pages.
Razmhosseini, et al., “Parasitic Slot Elements for Bandwidth Enhancement of Slotted Waveguide Antennas”, 2019 IEEE 90th Vehicular Technology Conference, Sep. 2019, 5 pages.
Schneider, et al., “A Low-Loss W-Band Frequency-Scanning Antenna for Wideband Multichannel Radar Applications”, IEEE Antennas and Wireless Propagation Letters, vol. 18, No. 4, Apr. 2019, pp. 806-810.
Serrano, et al., “Lowpass Filter Design for Space Applications in Waveguide Technology Using Alternative Topologies”, Jan. 2013, 117 pages.
Tong, et al., “A Wide Band Transition from Waveguide to Differential Microstrip Lines”, Dec. 2008, 5 pages.
Wang, et al., “A 79-GHz LTCC differential microstrip line to laminated waveguide transition using high permittivity material”, Dec. 2010, pp. 1593-1596.
Wu, et al., “The Substrate Integrated Circuits—A New Concept for High-Frequency Electronics and Optoelectronics”, Dec. 2003, 8 pages.
Yuasa, et al., “A millimeter wave wideband differential line to waveguide transition using short ended slot line”, Oct. 2014, pp. 1004-1007.
“Extended European Search Report”, EP Application No. 22166998.9, dated Sep. 9, 2022, 12 pages.
Adams, et al., “Dual Band Frequency Scanned, Height Finder Antenna”, 1991 21st European Microwave Conference, 1991, 6 pages.
Aulia Dewantari et al., “Flared SIW antenna design and transceiving experiments for W-band SAR”, International Journal of RF and Microwave Computer-Aided Engineering, Wiley Interscience, Hoboken, USA, vol. 28, No. 9, May 9, 2018, XP072009558.
Related Publications (1)
Number Date Country
20220368021 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
63188265 May 2021 US