Two-part package for medical implant

Information

  • Patent Grant
  • 8136659
  • Patent Number
    8,136,659
  • Date Filed
    Monday, May 10, 2010
    14 years ago
  • Date Issued
    Tuesday, March 20, 2012
    12 years ago
Abstract
The invention provides a two-part package and method of use for a pre-attached medical implant and delivery tool system. The package includes a wet compartment and a dry compartment and allows a pre-attached implant and delivery tool system to be at least partially stored immersed in a fluid in the wet compartment and at least partially stored in the dry compartment. In one embodiment the implant comprises a replacement heart valve, and the heart valve is stored inside the wet compartment while the heart valve delivery tool remains dry in the dry compartment.
Description
BACKGROUND OF THE INVENTION

The present invention relates to packaging for medical implant and delivery tools, and specifically to packaging for pre-attached heart valve and delivery tool systems where the heart valve is stored in a fluid and at least part of the delivery tool is stored dry.


Percutaneously delivered tissue based replacement heart valves are typically packaged in a container filled with a storage solution. The storage solution is designed to maintain the biological integrity of the implant (e.g., implant functionality, sterility, and functional integrity) while stored and awaiting use. When needed for implanting in a patient, the container is opened and the valve is removed using a variety of techniques aimed at preventing damage to the valve. The storage solution in which the valve was stored is then rinsed from the valve to prepare it for use. Next, the valve is attached to a device that will facilitate delivery of the valve to the appropriate location in the patient's body. Additional implants may also benefit from being stored in a solution where a coating or treatment on the implant requires wet storage to maintain functionality.


SUMMARY OF THE INVENTION

It may be desirable to attach a medical implant to a delivery tool, thus forming a medical implant delivery system, at manufacture, prior to its storage and final use. Benefits provided by such pre-attached implant and delivery systems are in part described as follows. The risk of damage to the implant and delivery system resulting from the attachment procedure will be minimized since the procedure will be performed by experienced manufacturing technicians specifically trained for the task. The tools and environment will be set up specifically for the task. It will be possible to validate the performance of the implant system prior to final packaging. The preparation time required by the physician will be minimized thereby reducing the cost of the procedure. Thus, a pre-attached delivery system would make a medical implant surgery more cost effective, safer, and simpler.


As stated above, many heart valves are currently stored in a storage solution prior to use. Since a pre-attached implant and delivery tool provide benefits that an unattached implant and delivery tool do not, it becomes desirable to be able to store a pre-attached heart valve and delivery tool system for an extended period of time prior to the implant procedure. But while it is beneficial to store the implant in a storage solution, it is not always desirable to store the delivery tool in such a solution. To do so would require the wet storage container and volume of storage solution to be larger than required if only the implant is stored in solution. Furthermore, the delivery tool would have to tolerate exposure to the solution during storage, which places additional design constraints on materials for fabrication of the delivery tool. In addition, the added step of removing and rinsing the solution from the delivery tool prior to use would require additional time and complicates the use of the device. Thus, it becomes necessary to be able to store part of the pre-attached delivery system in a liquid medium, while keeping another part dry. Specifically, it is desirable to keep the implant stored in fluid while the delivery tool remains dry.


When the valve is ready for implanting in a patient, it will often be inserted into the body in a collapsed configuration thereby minimizing the delivery cross section and accommodating anatomical limitations imposed by the particular paths followed within the body to the implant's intended location. This is specifically the case when an implant is meant to at least partially expand once inside the body to produce its intended effect. When an implant's configuration is capable of being altered between such expanded and collapsed states, it is often desirable to store the implant in a relaxed and expanded condition. Thus, when an implant delivery system as described above is stored for an extended period of time prior to use, it is desirable to maintain the implant in a relaxed and at least a partially expanded configuration during storage. Maintaining an expanded configuration will preserve the biological functionality of the implant, thus making an implant surgery more effective.


The present invention provides packages and methods of packaging for a pre-attached medical implant and delivery tool systems. The package allows the implant and delivery tool to be stored pre-attached to one another, such that the implant can be stored in a storage solution and the delivery tool can remain at least partially dry.


The package of one aspect of the present invention provides for wet and dry compartments such that a pre-attached implant delivery system can partially be stored in a fluid and partially stored dry. Specifically, the implant portion of the delivery system can be stored at least partially in a fluid while the delivery tool can be at least partially stored in the dry compartment. In some instances of the present invention, the implant comprises a heart valve which can be stored completely immersed in fluid contained in the wet compartment.


In some instances of the present invention the package comprises an interface between the wet and dry compartments. The interface may have a sealing mechanism to prevent fluid inside the wet compartment from leaking into the dry compartment. The seal between the wet compartment and dry compartment may comprise a seal ring compressed against the delivery tool. A seal may also be formed by a device inside the delivery tool which creates the seal. An exemplary device may be an inflatable member. Another device may be a compression driven device. In other instances of the present invention multiple seals may be used to form a system of seals which create an interface between the wet and a dry compartment. In one such instance one seal may be formed around an outside surface of the delivery system and another seal formed within some portion of the delivery tool. It is another feature of some embodiments of the invention that an interface between the dry and wet compartments comprises a strain relief mechanism that reduces the risk of breakage of the delivery tool resulting from its bending during storage and use.


Also a feature of some embodiments of the invention is the incorporation within the wet compartment of a mechanism to flush fluid from the wet compartment and or facilitate rinsing the implant with a rinsing solution within the wet compartment prior to the implant's use.


In another embodiment the implant is substantially centered within the wet compartment by features in the wet compartment.


In yet another embodiment the wet compartment incorporates features which minimize the amount of storage solution required to keep the implant submerged irrespective of the orientation of the package.


In another embodiment the wet compartment has an upper and a lower housing, and may have at least two gaskets between the housings. In some instances there may be only one gasket.


Another aspect of the invention provides a method of packaging a pre-attached medical implant and delivery tool by providing an implant pre-attached to a delivery tool, wet and dry package compartments, and loading the implant at least partially into the wet compartment such that the delivery tool is at least partially stored in the dry compartment. In one embodiment the implant is loaded into the wet compartment in a first configuration and reconfigured to a second configuration. The implant may be covered by a sheath in the first configuration and not covered by a sheath in the second configuration.


Yet another aspect of the invention provides a method of unpacking a pre-attached medical implant and delivery tool system from a package. In one embodiment the method includes providing an implant pre-attached to a delivery tool such that at least part of the implant is stored immersed in fluid, and the delivery tool is at least partially stored in a dry compartment. Fluid in the wet compartment is then flushed from the wet compartment, possibly with a rinsing solution and or with air. The configuration of the implant is altered from one configuration to a second configuration, and the implant is removed from the wet compartment.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2 show alternative embodiments of a two-part package of the present invention.



FIG. 3 illustrates an implant stored in a wet compartment immersed in fluid.



FIGS. 4A-B provide exemplary cross-sectional views of a wet compartment.



FIGS. 5A-G show seal systems that prevent fluid from escaping the wet compartment into the dry compartment.



FIG. 6 shows a bottle and cap embodiment of the wet compartment and seal mechanism.



FIG. 7 illustrates an embodiment of the seal in which the seal is formed by compression fitting.



FIG. 8 shows an embodiment of the wet compartment and seal mechanism.



FIGS. 9 and 10 provide a seal assembly used in the present invention.



FIG. 11 shows a cross-sectional view of a seal assembly used in the invention.



FIG. 12 shows an unloaded state of a seal.



FIG. 13 illustrates a loaded state of a seal which prevents fluid from escaping the wet compartment.



FIG. 14 shows an embodiment of the seal mechanism.



FIG. 15 illustrates a delivery tool seal.



FIGS. 16A-B illustrates a delivery tool seal.



FIG. 17 show a delivery tool wedge compression seal.



FIGS. 18A-G show an alternative seal located within the handle of the delivery tool.



FIG. 19 shows a strain relief mechanism of the seal cap to protect the delivery tool during bending.



FIG. 20 shows an embodiment of a bottle style wet container for the package and a portion of the delivery system.



FIG. 21 shows an alternate cross section of a wet container for the package.



FIG. 22 illustrates a clam shell embodiment of a wet container for the package assembled.



FIG. 23 shows a clam shell embodiment of a wet container for the package in an exploded view using two gaskets to seal the container.



FIG. 24 depicts a clam shell embodiment of a wet container for the package in an exploded view using a single gasket to seal the container.



FIG. 25 shows a detail of a clam shell embodiment of a wet container for the package in an exploded view using a single gasket to seal the container.



FIGS. 26A-D show a depiction of a method for introducing and removing an implant from a wet container.





The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings.


DETAILED DESCRIPTION OF THE INVENTION

The invention is drawn to a two-part packaging system for a medical implant delivery system. In some embodiments, the invention allows an implant to be pre-attached to a delivery tool and stored in an expanded and relaxed state in a storage solution while at least a portion of the delivery tool remains dry. The packaging system includes a wet compartment that is suitable for holding fluid and a dry compartment that remains dry, with a pass through between the two compartments to allow an implant delivery system to be stored partially in the wet compartment and partially in the dry compartment. This arrangement allows for the implant to be attached to the delivery tool prior to placement into the packaging system, creating a pre-attached implant delivery system. In one embodiment the implant portion of the delivery system is stored in the wet compartment and the delivery system is stored in the dry compartment. This arrangement allows the implant portion of the implant delivery system to be stored in fluid while preventing a portion of the delivery portion of the implant delivery system from being exposed to the fluid. In one embodiment of the invention the delivery system is comprised of a replacement heart valve connected to a delivery tool for delivering the heart valve to a desired located within a patient. The heart valve connected to the delivery tool may be stored inside the wet compartment while the delivery tool is stored inside the dry compartment. When the implant is ready for use the wet compartment may be drained of the fluid and or rinsed with a rinsing fluid, the implant can be removed from the packaging system and further prepared for use. This system thus simplifies, reduces risks of, and speeds the implant surgery because the delivery system is pre-attached prior to use and thus the user does not have to attach the implant to the delivery tool during the surgery. In still other embodiments the implant is stored partially in the wet compartment and partially in the dry compartment, and the delivery system is stored entirely in the dry compartment.


Possible implants envisioned for storage in the packaging system of the invention include those described in applications: Ser. No. 10/746,280 entitled “REPOSITIONABLE HEART VALVE AND METHOD,” filed on Dec. 23, 2003; Ser. No. 10/893,131 entitled “METHODS AND APPARATUS FOR ENDOVASCULARLY REPLACING A PATIENT'S HEART VALVE” filed on Jul. 15, 2004; Ser. No. 10/893,151 entitled “METHODS AND APPARATUS FOR ENDOVASCULARLY REPLACING A PATIENT'S HEART VALVE” filed on Jul. 15, 2004; Ser. No. 10/746,120 entitled “EXTERNALLY EXPANDABLE HEART VALVE ANCHOR AND METHOD” filed on Dec. 23, 2003; Ser. No. 10/746,285 entitled “RETRIEVABLE HEART VALVE ANCHOR AND METHOD” filed Dec. 23, 2003; Ser. No. 10/982,692 entitled “METHODS AND APPARATUS FOR ENDOVASCULARLY REPLACING A HEART VALVE” filed on Nov. 5, 2004; Ser. No. 10/746,872 entitled “LOCKING HEART VALVE ANCHOR” filed on Dec. 23, 2003; and Ser. No. 10/870,340 entitled “EVERTING HEART VALVE” filed on Jun. 16, 2004.


One embodiment of package 1 is shown in FIG. 1. Exemplary package 1 comprises a wet compartment 3, at least partially contained within container 4 and a dry compartment 5. The parts of an implant and its delivery system stored in wet and dry compartments may differ according to the materials, design, etc. of the implant and delivery system. In the embodiment shown in FIG. 1, an implant 7 is connected to a delivery tool 9 such that implant 7 is stored inside wet compartment 3, while delivery tool 9 and wet compartment 3 are stored inside the dry compartment 5. An interface 11 between the wet compartment 3 and the dry compartment 5 allows implant 7 to be connected to delivery tool 9 while storing implant 7 in a wet compartment 3 and keeping at least a portion of delivery tool 9 dry. Alternatively, a portion of the wet compartment may extend into the delivery tool and be additionally sealed within handle 6. In some embodiments the implant 7 may be partially stored inside the wet compartment 3. In other embodiments the delivery tool 9 may be partially stored in the dry compartment 5. In further embodiments implant 7 may be partially stored in the wet compartment and delivery tool 9 may be partially stored in the dry compartment. Package 1 may be cylindrical in shape, or may have a rectangular cross-section. The package may also be any other size, shape, or configuration that is suitable to store a pre-attached implant and delivery tool under the conditions of this invention. FIG. 2 shows another embodiment of package 1 where implant 7 is stored inside wet compartment 3 while delivery tool 9, which is connected to implant 7, and wet compartment 3 are stored inside dry compartment 5. The configurations of the delivery system shown in FIGS. 1 and 2 illustrate how at least key portions of the implant are maintained during storage in solution while at least part of the delivery tool remains dry and unexposed to the storage solution.



FIG. 3 shows one embodiment of wet container 4 comprising at least a portion of wet compartment 3. Delivery tool 9 comprising guide wire tube 21, which is connected to nose cone 23 is connected to implant 7. Implant 7 is stored inside wet compartment 3 which is filled with fluid 17 to keep the implant 7 wet during storage. Seal 13 prevents fluid 17 from escaping wet compartment 3. Exemplary wet container 4 has a part 19 with a luer connector used to flush and remove fluid 17 from wet compartment 3 prior to use of the implant. In some embodiments the wet compartment may comprise only one flushing part. In other embodiments the wet compartment may contain at least two or more flushing parts. FIG. 3 illustrates implant 7 in its expanded and relaxed configuration. This configuration is desirable during storage to maintain the biological functionality of the implant.


In some embodiments fluid 17 comprises a storage solution to preserve the functionality of implant 7 during storage in the package system. Fluid 17 may comprise a saline solution or any other storage solution. In some embodiments fluid 17 may comprise a sterilant and or fixative solution such as gluteraldehyde or formalin. In still other embodiments the fluid 17 may comprise a bacteria static solution to prevent bacteria from growing in the fluid. The fluid may also be a buffered solution. In some embodiments the solution may be comprised of a physiological salt or an alcohol. In further embodiments the fluid 17 may be any combination or mixture of the solutions described above, or any other solutions to achieve the intent of this invention.


In one embodiment the implant 7 comprises a replacement heart valve. In some embodiments the replacement heart valve may be comprised of tissue from a human, porcine, or other suitable animal. In some embodiments the heart valve may comprise a mechanical heart valve, bioprosthetic heart valve, polymer heart valve, or any other type of artificial heart valve treated in such a fashion as to require storage in a storage solution. In some embodiments the implant may comprise any combination of the above heart valves suitable for the present invention. In some embodiments implant 7 may also comprise implantable devices other than heart valves, for example, but not limited to, vascular grafts, angioplasty rings, and stents, musculoskeletal grafts, grafts specific to other body ducts including the digestive system or lymphatic system.



FIG. 4A shows an exemplary cross-section of the distal end of wet container 4 from FIG. 3, while FIG. 4B show a more proximally located cross-section of wet container 4 from FIG. 3. In some embodiments the cross-section of the wet compartment is triangular in shape. Such a shape minimizes the amount of fluid required to assure the implant is immersed in fluid over the range of possible orientations the container may be subjected to while in storage. A further benefit of the triangular shape or other non cylindrical shapes of the cross-section is to present a variable cross section of the fluid which acts as a mask for radiation. The wet container can then be designed to minimize the exposure to sterilizing radiation of portions of its contents. In other embodiments of the invention the cross section of the wet container may have a circular shape, a rectangular shape, or any other shape suitable for this invention. In further embodiments of the invention the wet container may have a combination of any of the above cross sectional shapes distributed across the wet container. The desired shape of the cross section of the wet compartment may depend on the type and size of the delivery system being stored in the package, the type and size of the implant stored in the wet compartment, both the type and size of the delivery system and the implant, the type of sterilization procedure, or any other factor. It is desirable that the size and shape of wet container 4 allows the implant 7 to be stored in an expanded and relaxed state during storage, allowing for greater biological functionality when the implant is inside a patient.


In some embodiments of the present invention a seal is formed between the dry compartment and wet compartment to prevent fluid inside the wet compartment from escaping into the dry compartment. A seal allows the implant to be stored in fluid to maintain its biological integrity, while keeping the delivery tool dry. An exemplary seal may be formed when a seal cap is screwed or attached onto a receiving member of the delivery system, forcing a compressing member against the delivery tool, creating the seal. FIGS. 5A-G illustrate similar embodiments of an exemplary seal that prevents fluid from entering the dry compartment of the packaging system. Exemplary seal 13 is created when seal ring 29 is compressed against the outer periphery of multi-lumen catheter 28 by compression fitting to fill space 30. Seal ring 29 is compressed when seal cap 15 is screwed onto wet container 4 such that male threads 31 of seal cap 15 engage female threads 33 of wet container 4. FIGS. 5A-E show exemplary configurations of seal ring 29 that may be used in the current invention to create a seal between the wet compartment and dry compartment. Any other suitable shape of seal ring may be used in accordance with this invention. In another embodiment shown in FIGS. 5F and 5G, seal ring 29 is compressed against the multi-lumen catheter 28 by folder member 35.



FIG. 6 illustrates one embodiment of the invention using a bottle and cap assembly. Seal cap 15 is screwed onto bottle-shaped wet container 4 as described above to create the seal. The shape of wet container 4 allows the implant 7 to be stored in an expanded and relaxed state, but any other size, shape, or configuration of wet container 4 may be used to carry out the intent of the invention. FIG. 7 is a detailed sectional view of the seal mechanism depicted in FIG. 6. Exemplary seal cap 15 comprises seal cap arm 49, which causes elastomer compression fitting area 55 to compress against delivery tool 9 when seal cap 15 is screwed onto wet container 4, such that male threads 31 of seal cap 15 engage female threads 33 of wet container 4. When seal cap 15 is screwed onto wet container 4, seal cap arm 51 pushes elastomer compression fitting 53 against V-rib 67 of wet container 4, sealing the wet container 4 to elastomer compression fitting 53.



FIGS. 8-13 illustrate another embodiment of the interface 11 where seal assembly 61 is comprised of elastomer diaphragm 63 and plastic support spring 65. In FIG. 12, the seal assembly is shown in an unloaded state. In FIG. 13 seal cap 15 is screwed onto wet container 4, causing the inner rim 64 of seal cap 15 to push and straighten spring ridges 66 and elastomer diaphragm 63, compressing elastomer diaphragm area 68 against delivery tool 9, creating a seal. V-rib 67 of wet container 4 creates a seal between the wet container 4 and elastomer diaphragm 63 when seal cap 15 is completely screwed onto wet container 4. In another embodiment of the seal shown in FIG. 14, an exemplary seal against the delivery tool is maintained by the elasticity of the elastomer diaphragm seal 71. The seal cap 15 is screwed onto wet container 4 as described above, causing elastomer diaphragm seal 71 to be compressed against container 4. The examples of the seals above allow the implant to be at least partially stored in solution in the wet compartment of the delivery system while preventing fluid from escaping, thus keeping the delivery tool dry. The use of a seal further allows the implant to be pre-attached to the delivery tool such that the delivery tool can be kept at least partially dry during storage.


In other embodiments of the invention an additional seal between the wet compartment and the dry compartment may be required and is created by a device or mechanism inside the delivery tool. Referring to FIG. 15A, an exemplary seal is created by inflatably expanding member 75, collapsing multi lumens 77 of implant 7 against ring 76 the outer periphery of the distal end of the delivery tool. Alternatively as depicted in FIG. 15B, the exemplary seal created by inflatably expanding member 75, collapsing multi lumens 77 of implant 7, may seal against wet container 4. The inflatably expanding member 75 is inflated by central lumen 81 which is located within delivery tool 9. In some embodiments, the central lumen 81 inflates the inflatably expanding member 75 with air, liquid, or any other substance or gas that is suitable for the present invention. In another embodiment of the seal, FIGS. 16A and 16B show inflatably expanding member 75 pushing multi-lumens 77 of implant 7 into slots 82 within wet container 4 to create a smooth sealing surface. These exemplary seals prevent fluid inside the wet compartment from escaping into the dry part of the delivery system, allowing the implant to be stored in a storage solution while keeping at least a portion of the delivery tool dry.


In another embodiment shown in FIG. 17, the delivery tool 9 comprises a driven compression component 83 and elastomer compressible component 87, wherein, by forcing the compression component into the compressible component, the compression caused be component 83 against the compressed component 87 collapses multi-lumens 77 against the wet container 4, creating a seal between the wet compartment 3 and the dry compartment of the implant delivery system. In some embodiments of the invention, compression component 83 comprises a conical shape such that expanding member 83 wedges between elastomer 87, collapsing multi-lumens 77 against the wet container 4 to create the seal.


In yet another embodiment the additional seal may be incorporated in the handle as depicted in FIGS. 18A-G. Such a seal may in addition incorporate an homeostatic seal which provides additional functionality to the implant deployment system. FIG. 18A shows an embodiment in which actuation elements 1810 extend from a chamber within the deployment tool handle 1804 into lumens 1812 extending through a tapered adapter portion 1806 into a catheter 1802 of the deployment tool. A balloon 1808 or other inflatable device may be inflated during storage to maintain any storage solution within catheter 1802 and lumens 1806 (and possibly surrounding any implant connected to the deployment tool). Balloon 1804 may be deflated prior to use to permit the storage fluid to be drained and or rinsed from the device through port 1814. During use, handle end cap 1816 provides a homeostatic seal permitting actuation elements 1810 but substantially preventing blood to escape from handle 1804. Such a homeostatic seal may be configured from a thin sheet of silicone through which the actuation elements pass. Wherein the interface between the silicone sheet and actuation elements comprises an interference fit.



FIG. 18B shows an embodiment similar to that of FIG. 18A in which balloon 1808 has a central lumen 1818 permitting other devices (such as actuation elements 1820) to pass through toward the distal end of the deployment tool.



FIG. 18C shows an embodiment in which the actuation elements 1810 pass through holes 1822 formed in an elastomeric plug 1824. To seal the deployment tool system during storage, slidable bars 1826 and 1828 of a seal actuator are moved toward each other along a guide 1830 to compress plug 1824 and seal holes 1822 around actuation elements 1810. This action maintains storage fluid within catheter 1802 and around any implant connected to the deployment tool.



FIG. 18D shows an embodiment in which the actuation elements 1810 pass through flexible tubes 1832 within handle 1804. Pressurized fluid may be provided to the interior of handle 1804 through a valved port 1814 to collapse tubes 1832 around actuation elements 1810, thereby retaining any storage fluid within catheter 1802 (and around any attached implant) during storage. Storage fluid may be drained and or rinsed from the system by port 1814 before use of the deployment tool.



FIG. 18E shows an embodiment in which the actuation elements pass through holes (not shown) formed in handle portion 1838 and through holes 1834 formed in a rotating handle endpiece 1836. Rotation of endpiece 1836 in the direction shown takes holes 1834 out of alignment with their corresponding holes in handle portion 1838, thereby sealing in any storage fluid in the interior of tapered handle portion 1806 and catheter 1802 (and any attached implant). Endpiece 1836 may be rotated the other direction to line up the holes to permit actuation elements 1810 to be moved during use of the deployment tool.



FIG. 18F shows an embodiment in which the actuation elements 1810 pass through holes 1842 in an endpiece 1840 made at least in part of wax or low durometer elastomer or some frangible material. While in storage, holes 1842 seal around actuation elements 1810 to retain storage fluid within the deployment tool and any attached implant. Prior to use, storage fluid may be drained and or rinsed from the system through port 1814. Movement of actuation elements 1810 through holes 1842 breaks the seal formed by the frangible material, thereby permitting deployment tool to be used to deploy the implant.



FIG. 18G shows an embodiment in which the actuation elements 1810 pass through holes 1844 formed in an elastomeric plug 1846 extending from the proximal end of the deployment tool handle. Distal movement of plug 1847 (in the direction of the arrows) compresses plug 1846 against the surface of tapered handle portion 1806 and outer cylinder 1849. This action compresses holes 1844 against actuation elements 1810, thereby sealing the deployment tool and retaining any storage fluid within it.


It is desirable that the delivery system can be stored, transported, and used without undergoing damage to the system due to bending from movement or manipulations from any number of sources. In a further embodiment of interface 11 as shown in FIG. 19, exemplary seal cap 15 comprises a strain relief feature embodied in component 89 to protect delivery tool 9 from damage due to small radius bends in the delivery tool 9 during storage and use. In some embodiments the strain relief component may be smooth, and in some embodiments the strain relief mechanism may have internal and external ribs. In some embodiments the strain relief component may be removably attached to the seal cap.


An alternate embodiment of wet container 4 as shown in FIGS. 20 and 21 incorporates infolded wings 91 within wet container 4 to provide the same functionality as that described for FIGS. 4A and 4B. Additional support of the infolded wings 91 may be provided by a backboard 92 on the device packaging, as shown in FIG. 21.


In a further embodiment as shown in FIGS. 22 and 23, exemplary wet container 4 comprises an upper housing 95 and lower housing 97, and an upper gasket 101 and lower gasket 103 which create the seal between the wet compartment and the dry compartment of the packaging system. This embodiment is desirable because it allows the seal to be created simply by the interface between the delivery tool, gaskets, and housings. The gaskets prevent the fluid from escaping the wet compartment, thus keeping the delivery tool dry. In some embodiments the upper and lower gaskets 101 and 103 could be molded to the upper and lower housings 95 and 97, respectively. In other embodiments the gaskets could be bonded to the housings with adhesive material or maintained by interference fits. In other embodiments the housings and gaskets could remain separate, loose parts. In further embodiments the seal could be created from a single gasket 102 within housings as illustrated in FIGS. 24 and 25. Such an embodiment might require the gasket to be broken for removal from the delivery tool prior to use of the implant delivery system.


The present invention also draws on methods of packaging an implant that is pre-attached to a delivery tool used to deliver the implant to a specific location within a patient. The implant is loaded into a wet compartment of the package such that the delivery tool remains in the dry compartment of the package. In some embodiments the implant is partially stored in the wet compartments. In other embodiments the delivery tool is partially stored in the dry compartment. In further embodiments the implant is partially stored in the wet compartment and the delivery tool is partially stored in the dry compartment. The method of storing an implant pre-attached to a delivery tool allows the delivery system to be used immediately after it is removed from the packaging, such that a user subjected to the concerns associated with attaching an implant to a delivery tool in the procedure setting. This provides for a quicker, safer, and more efficient procedure.


One embodiment of the packaging method is shown in FIGS. 26A-C. Sheathed implant 125 is first loaded through seal cap 15 and further into wet compartment 3. FIG. 26B illustrates the step of unsheathing the expanding implant 127 while sheath 123 is urged towards the proximal end of wet compartment 3. Once the sheath 123 has been completely removed from expanding implant 129 as shown in FIG. 26C, seal 13 can be formed using any of the examples discussed above to prevent fluid [not shown] from escaping wet compartment 3. After the seal 13 is formed, the expanded implant can be stored inside wet compartment 3, immersed in fluid [not shown], for an extended period of time as needed. The method of storing expanded implant 129 allows the implant to retain a natural and relaxed configuration during storage which allows for a more biologically functional implant to be inserted into a patient. The dual compartment design of the invention allows the implant to be retained in this relaxed state during storage while being preserved in a solution which is maintained inside the wet compartment, such that the delivery tool remains at least partially dry in the dry compartment.


When the implant 129 is needed for use, the flushing luer part 19 as shown in FIG. 3 can be used to flush and or rinse the fluid 17 out of wet compartment 3. Referring now to FIGS. 26C-D, seal 13 can then be released in a reverse manner to any of the methods of creating the seal discussed above, or any other seal creating mechanism which may be known in the art. Once seal 13 is released, sheath 123 can then be distally slid to resheath the implant 131 until the implant is again in a fully sheathed state 125. The implant can then be removed from the wet compartment 3 and further prepared for use. The pre-attached storage allows for immediate use and eliminates the step of a user attaching an implant to a delivery tool during surgery.


It will be necessary to sterilize part of all of the implant delivery system to prevent infection when the delivery system is inserted into a patient. In some embodiments the fluid in the wet compartment in which the implant is immersed during storage may be sterilized to maintain a sterile environment for the implant during storage. In other embodiments it may be desirable to sterilize the delivery tool of the implant system, either alone or in conjunction with the fluid. Sterilization in the present invention may be by chemical, heat, irradiation, gas, or any other known means. The dual compartment design of the invention allows the implant to be stored in solution, yet provides the added benefit that the fluid may be used as a mask to radiation sterilization such that if the entire delivery system is sterilized, the implant will receive a smaller dose of sterilization than the delivery tool due to the masking effect of the fluid. This smaller dose received by the implant will reduce the risk of damage and loss of functionality of the implant components susceptible to radiation damage such as certain polymers and tissue components.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A medical implant and delivery tool package comprising: a wet compartment containing a fluid;a dry compartment;an implant at least partially stored inside the wet compartment; anda delivery tool connected to the implant at least partially stored inside the dry compartment,wherein the implant comprises a heart valve.
  • 2. The package of claim 1 wherein the heart valve is stored inside the wet compartment.
  • 3. The package of claim 1 further comprising an interface between the dry compartment and the wet compartment.
  • 4. The package of claim 3 wherein the interface comprises a seal to prevent fluid from entering the dry compartment.
  • 5. The package of claim 4 wherein the seal comprises a compression component and a compressing component.
  • 6. The package of claim 4 wherein the delivery tool comprises a device to create a seal.
  • 7. The package of claim 6 wherein the device comprises an inflatably expanding member.
  • 8. The package of claim 6 wherein the device comprises a compression driven expanding member.
  • 9. The package of claim 8 wherein the compression driven expanding member comprises a wedging component.
  • 10. The package of claim 3 wherein the interface comprises a strain relief mechanism.
  • 11. The package of claim 1 wherein the wet compartment comprises at least one component to allow passage of fluid from the wet compartment.
  • 12. The package of claim 1 wherein the implant is substantially centered within the wet compartment.
  • 13. The package of claim 1 wherein the wet compartment comprises an upper housing and a lower housing.
  • 14. The package of claim 13 wherein the wet compartment further comprises a gasket between the upper housing and the lower housing.
  • 15. The package of claim 13 wherein the wet compartment further comprises at least two gaskets between the upper housing and the lower housing.
  • 16. The package of claim 1 wherein the wet compartment has a variable cross-section adapted to control transmission of sterilizing radiation from outside the wet compartment to the medical implant.
CROSS-REFERENCE

This application is a divisional of U.S. application Ser. No. 11/275,913, filed Feb. 2, 2006, now U.S. Pat. No. 7,712,606; which application claims the benefit of U.S. Provisional Application No. 60/716,883, filed Sep. 13, 2005. These applications are incorporated herein by reference in their entirety.

US Referenced Citations (449)
Number Name Date Kind
3334629 Cohn Aug 1967 A
3409013 Berry Nov 1968 A
3540431 Mobin-Uddin Nov 1970 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4233690 Akins Nov 1980 A
4291420 Reul Sep 1981 A
4326306 Poler Apr 1982 A
4423809 Mazzocco Jan 1984 A
4425908 Simon Jan 1984 A
4501030 Lane Feb 1985 A
4580568 Gianturco Apr 1986 A
4602911 Ahmadi et al. Jul 1986 A
4610688 Silvestrini et al. Sep 1986 A
4617932 Kornberg Oct 1986 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655218 Kulik et al. Apr 1987 A
4655771 Wallsten Apr 1987 A
4662885 DiPisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4755181 Igoe Jul 1988 A
4796629 Grayzel Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4856516 Hillstead Aug 1989 A
4865600 Carpentier et al. Sep 1989 A
4872874 Taheri Oct 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4954126 Wallsten Sep 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5002559 Tower Mar 1991 A
5064435 Porter Nov 1991 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5209741 Spaeth May 1993 A
5258042 Mehta Nov 1993 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5425762 Muller Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5443495 Buscemi et al. Aug 1995 A
5443499 Schmitt Aug 1995 A
5476506 Lunn Dec 1995 A
5476510 Eberhardt et al. Dec 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5507767 Maeda et al. Apr 1996 A
5534007 St. Germain et al. Jul 1996 A
5545133 Burns et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5571215 Sterman et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5645559 Hachtman et al. Jul 1997 A
5662671 Barbut et al. Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5693083 Baker et al. Dec 1997 A
5695498 Tower Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5720391 Dohm et al. Feb 1998 A
5733325 Robinson et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5769812 Stevens et al. Jun 1998 A
5800456 Maeda et al. Sep 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824064 Taheri Oct 1998 A
5843158 Lenker et al. Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860966 Tower Jan 1999 A
5861024 Rashidi Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5885228 Rosenman et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968070 Bley et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6022370 Tower Feb 2000 A
6027520 Tsugita et al. Feb 2000 A
6027525 Suh et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6093203 Uflacker Jul 2000 A
6123723 Konya et al. Sep 2000 A
6142987 Tsugita Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6165209 Patterson et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6179859 Bates Jan 2001 B1
6187016 Hedges et al. Feb 2001 B1
6197053 Cosgrove et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6214036 Letendre et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6231544 Tsugita et al. May 2001 B1
6231551 Barbut May 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6277555 Duran et al. Aug 2001 B1
6309417 Spence et al. Oct 2001 B1
6319281 Patel Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6336937 Vonesh et al. Jan 2002 B1
6338735 Stevens Jan 2002 B1
6348063 Yassour et al. Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6416510 Altman et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540768 Diaz et al. Apr 2003 B1
6562058 Seguin et al. May 2003 B2
6592546 Barbut et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6610077 Hancock et al. Aug 2003 B1
6616682 Joergensen et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6623518 Thompson et al. Sep 2003 B2
6632243 Zadno-Azizi et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6663588 DuBois et al. Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676668 Mercereau et al. Jan 2004 B2
6676692 Rabkin et al. Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682543 Barbut et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6695864 Macoviak et al. Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6712842 Gifford et al. Mar 2004 B1
6712843 Elliott Mar 2004 B2
6714842 Ito Mar 2004 B1
6719789 Cox Apr 2004 B2
6723122 Yang et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6764503 Ishimaru Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6767345 St. Germain et al. Jul 2004 B2
6773454 Wholey et al. Aug 2004 B2
6776791 Stallings et al. Aug 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6837901 Rabkin et al. Jan 2005 B2
6840957 DiMatteo et al. Jan 2005 B2
6843802 Villalobos et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6881220 Edwin et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890340 Duane May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6905743 Chen et al. Jun 2005 B1
6908481 Cribier Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6936058 Forde et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6953332 Kurk et al. Oct 2005 B1
6964673 Tsugita et al. Nov 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6984242 Campbell et al. Jan 2006 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037331 Mitelberg et al. May 2006 B2
7122020 Mogul Oct 2006 B2
7166097 Barbut Jan 2007 B2
7175653 Gaber Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7189258 Johnson et al. Mar 2007 B2
7191018 Gielen et al. Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7235093 Gregorich Jun 2007 B2
7258696 Rabkin et al. Aug 2007 B2
7329279 Haug et al. Feb 2008 B2
7374560 Ressemann et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7445631 Haug et al. Nov 2008 B2
7632298 Hijlkema et al. Dec 2009 B2
7699168 Ryan et al. Apr 2010 B2
7712606 Salahieh et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010041930 Globerman et al. Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010044656 Williamson, IV et al. Nov 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020010489 Grayzel et al. Jan 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020029981 Nigam Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020055769 Wang May 2002 A1
20020058995 Stevens May 2002 A1
20020077696 Zadno-Azizi et al. Jun 2002 A1
20020082609 Green Jun 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020120328 Pathak et al. Aug 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020177766 Mogul Nov 2002 A1
20020188341 Elliott Dec 2002 A1
20020188344 Bolea et al. Dec 2002 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040791 Oktay Feb 2003 A1
20030045928 Yang et al. Mar 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030070944 Nigam Apr 2003 A1
20030109924 Cribier Jun 2003 A1
20030109930 Bluni et al. Jun 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030144732 Cosgrove et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030168370 Merboth et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030199972 Zadno-Azizi et al. Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212452 Zadno-Azizi et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030229390 Ashton et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040073198 Gilson et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040087982 Eskuri et al. May 2004 A1
20040088045 Cox May 2004 A1
20040093016 Root et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098099 McCullagh et al. May 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153094 Dunfee et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040204755 Robin Oct 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20050033402 Cully et al. Feb 2005 A1
20050043711 Corcoran et al. Feb 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050096692 Linder et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050100580 Osborne et al. May 2005 A1
20050107822 WasDyke May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050165352 Henry et al. Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster Sep 2005 A1
20050203615 Forster Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050209580 Freyman Sep 2005 A1
20050228472 Case et al. Oct 2005 A1
20050251250 Verhoeven et al. Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267560 Bates Dec 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060015168 Gunderson Jan 2006 A1
20060015177 Quest et al. Jan 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060260967 Clarke et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070055340 Pryor Mar 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070118214 Salahieh et al. May 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20080125859 Salahieh et al. May 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080288054 Pulnev et al. Nov 2008 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090264997 Haug et al. Oct 2009 A1
20100121434 Paul et al. May 2010 A1
Foreign Referenced Citations (60)
Number Date Country
1338951 Mar 2002 CN
0409929 Apr 1997 EP
1000590 May 2000 EP
1057459 Dec 2000 EP
1057460 Dec 2000 EP
0937439 Sep 2003 EP
1340473 Sep 2003 EP
1356793 Oct 2003 EP
1042045 May 2004 EP
0819013 Jun 2004 EP
1229864 Apr 2005 EP
1430853 Jun 2005 EP
1059894 Jul 2005 EP
1078610 Aug 2005 EP
1576937 Sep 2005 EP
1582178 Oct 2005 EP
1582179 Oct 2005 EP
1469797 Nov 2005 EP
1600121 Nov 2005 EP
1156757 Dec 2005 EP
1616531 Jan 2006 EP
WO 9315693 Aug 1993 WO
WO 9504556 Feb 1995 WO
WO 9529640 Nov 1995 WO
WO 9614032 May 1996 WO
WO 9624306 Aug 1996 WO
WO 9836790 Aug 1998 WO
WO 9850103 Nov 1998 WO
WO 9857599 Dec 1998 WO
WO 9944542 Sep 1999 WO
WO 0009059 Feb 2000 WO
WO 0044308 Aug 2000 WO
WO 0044313 Aug 2000 WO
WO 0049970 Aug 2000 WO
WO 0067661 Nov 2000 WO
WO 0105331 Jan 2001 WO
WO 0108596 Feb 2001 WO
WO 0110320 Feb 2001 WO
WO 0110343 Feb 2001 WO
WO 0135870 May 2001 WO
WO 0164137 Sep 2001 WO
WO 0236048 May 2002 WO
WO 0241789 May 2002 WO
WO 02100297 Dec 2002 WO
WO 03003943 Jan 2003 WO
WO 03003949 Jan 2003 WO
WO 03011195 Feb 2003 WO
WO03030776 Apr 2003 WO
WO 03015851 Nov 2003 WO
WO03094797 Nov 2003 WO
WO 2004014256 Feb 2004 WO
WO 2004019811 Mar 2004 WO
WO 2004023980 Mar 2004 WO
WO 2004026117 Apr 2004 WO
WO 2004041126 May 2004 WO
WO 2004047681 Jun 2004 WO
WO 2004066876 Aug 2004 WO
WO 2004082536 Sep 2004 WO
WO 2005084595 Sep 2005 WO
WO 2005087140 Sep 2005 WO
Related Publications (1)
Number Date Country
20100219092 A1 Sep 2010 US
Provisional Applications (1)
Number Date Country
60716883 Sep 2005 US
Divisions (1)
Number Date Country
Parent 11275913 Feb 2006 US
Child 12777161 US