The invention relates to a piston for internal combustion engines.
Up to now, the weight optimization in the case of two-part pistons with an open cooling passage has been carried out by local weight savings accompanied by increasing cost disadvantage.
The invention is based on the object of specifying a piston with optimized mass, by means of which the disadvantages which are described in the introduction are avoided.
The object is achieved by the bottom part having a flat joint region with at least one recess and the top part having a flat joint region and also having an annular recess which extends from the joint region into the bottom part, wherein the at least one recess of the bottom part is in overlapping alignment with a section of the annular recess after the materially bonding connection. Created as a result of the annular recess in the top part is a space which during operation of the piston forms a cooling passage which, with regard to the piston stroke axis, is open toward the bottom or can be closed off by a sealing element. By the separate production of the top part in a suitable manner (such as casting, forging or the like) the desired contouring of the subsequent cooling passage can be achieved. The introduction of the annular recess is also carried out during the forging if the top part is produced by forging, but can also be introduced by further machining, such as by metal cutting machining. Both during the forging and during the casting of the top part any contouring, such as uniform cross sections or cross sections which deviate from each other, with or without undercuts, over the annular extent are possible. At the same time, adjacently lying joint regions (such joint regions which are subsequently in the direction of the ring zone of the piston and such joint regions which are subsequently in the direction of the piston stroke axis in this case) are realized together with the production or introduction of the annular recess in the bottom part. Via these joint surfaces (joint regions), the top part can be connected to the bottom part in a suitable manner.
Produced separately from the top part is a bottom part, also in a suitable manner, such as by forging, casting or a combination of such methods including the subsequent attaching of piston elements on a piston base part, such as welding of piston skirts onto a piston base part. During the production, or subsequent to it, the bottom part is provided with the at least one recess, wherein a joint region is also formed around the at least one recess. As a result, specific contours for the materially bonding connection can be dispensed with both in the top part and in the bottom part. Above all, circumferentially encompassing flanges with joint surfaces on the bottom part and on the top part, as are known from the prior art, are dispensed with. In other words, both the bottom part and the top part are produced, having a large-area joint region for the materially bonding connection, of which only the annular recess in the top part and the at least one recess in the bottom part are excluded. As a result of this large-area joint region, the overall stability of the finished piston after the materially bonding connecting of top part to bottom part is increased. Furthermore, a very high degree of flexibility exists in the contouring not only of the annular recess of the top part (as already described above) but also during the introduction of the at least one recess in the bottom part, which can also be carried out by metal cutting machining (such as milling of the like) or forging. Especially when the annular recess in the top part is used as a cooling passage (open or closed), the at least one recess in the bottom part provides an appreciable material saving.
In a development of the invention, provision is made in the bottom part for more than two recesses, preferably for four recesses. These at least two recesses are also in overlapping alignment with the annular recess of the top part so that as a result of a plurality of recesses in the bottom part more material can be saved and the weight of the finished piston can be reduced. Furthermore, as a result of the at least two recesses, or more than two recesses, it is possible to inject cooling medium into the cooling passage of the annular recess in the top part. Especially when the at least two recesses in the bottom part extend over a larger circular arc section of the annular cooling passage (and are therefore not formed as a round recess), a high volume of cooling medium can be injected, wherein at the same time tolerances are compensated during the installation of the injection nozzle for the cooling medium since a larger impingement surface is made available for the cooling oil jet which is delivered by the injection nozzle.
In a development of the invention, a sealing element is inserted between the bottom part and the top part. Such a one-piece or multi-piece sealing element can be produced separately from the bottom part and the top part and then be inserted when the top part is connected in a materially bonding manner to the bottom part. During this materially bonding connecting, the fastening of the sealing element on the bottom part and/or on the top part can be carried out at the same time. The one-piece or multi-piece sealing element creates a naturally sealed space in the top part by covering the annular recess so that during subsequent operation of the finished piston this space serves as an annular cooling passage. So that a cooling medium can be introduced in this space and also discharged again or circulated it is still necessary to introduce at least one inlet opening and one outlet opening. These can be introduced into the bottom part and/or the top part and/or the sealing element at a suitable point, depending on the geometry of the finished piston. It is important that a cooling oil jet of an injection nozzle can be injected via the at least one inlet opening into the annular cooling passage in the top part, so the injected cooling oil can then circulate in the annular cooling passage and can then be discharged again via the at least one outlet opening.
In a development of the invention, the sealing element has at least one opening, preferably two openings. The at least one opening serves as an inlet opening and outlet opening so that via the at least one recess in the top part the cooling oil jet can be injected into the annular recess of the top part via the at least one opening in the sealing element. So that the cooling medium can circulate in the cooling passage in the top part, it is advantageous if the sealing element has two openings, wherein the one opening (e.g. a drilling) serves as the inlet opening and the other opening (e.g. also a drilling) serves as the outlet opening. In this case, it is self-evident that these two openings of the sealing element are arranged in those regions of the at least one recess in the top part or in recesses of the bottom part which differ from each other.
For the materially bonding connection, a friction weld joint may be particularly advantageously considered since the flat joint regions facing each other on the bottom part or on the top part are particularly well suited for this. The friction weld beads which are created during the friction welding process can be removed altogether or partially removed or not removed at all. If they are not removed at all, this depends on whether they are generally accessible (if they are not accessible, removal is not possible) or whether they interfere with the operation of the piston or, for example, interfere with the flow of the cooling medium.
An exemplary embodiment of a piston without a sealing element, and an exemplary embodiment of a piston with a sealing element are described in the following text and are explained in more detail with reference to the drawings.
Suitable processes such as forging, metal cutting processes, eroding and the like may be considered for both the introduction of the at least one recess 3 of the bottom part 1 and of the annular recess 5 of the top part 4. It is important in this case that during the introduction of the annular recess 5 a large degree of freedom exists so that consequently the desired inner contour of a subsequent cooling passage of the finished piston can be established and optimally designed. During the introduction of the at least one recess 3 in the bottom part 1 a large degree of freedom also exists both during the introduction of these recesses and their contouring so that as a result the functioning (passage of the cooling oil jet in the direction of the recess 5) can be achieved, also giving consideration to material savings while maintaining strength at the same time.
Shown in
Whereas it is shown in
For the design of the piston 7 according to
According to the invention, provision is made for a piston of an internal combustion engine, formed from a bottom part and a top part, which has a piston crown and a cooling passage, wherein the piston has material recesses which are created by suitable forged contours and joint planes.
The positioning of material recesses is effected by suitable forged contours and joint planes. As a result of this, local material savings can be achieved. By taking into consideration the joint planes in the piston design, appreciable material savings, and consequently a reduction of the piston mass, are achieved. Also, the optimization of the forged contours with regard to material saving leads to an appreciable mass reduction of the piston.
It is furthermore provided according to the invention that the cooling passage has a sealing element.
The piston according to the invention can for example be constructed as a steel piston.
Number | Date | Country | Kind |
---|---|---|---|
102015219050.1 | Oct 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/001633 | 10/4/2016 | WO | 00 |