This application relates to engine valve actuation. More specifically, the application provides a two step actuator with two fluid pathways.
Electro-hydraulic valve actuators have the ability to actuate an engine valve by cooperating with control electronics and hydraulic fluid. The engine valve can be controlled to allow the engine to receive a mixture of air and fuel for combustion and to release exhaust.
The devices disclosed herein improve the art by way of an actuator comprising a hollow first piston comprising a first extant with a first outer diameter D1 and a second extant comprising a second outer diameter D2, where D1>D2. A second piston is slidable within the first piston. An actuator housing comprises a recess, a first tubular port in communication with the first piston, and a second tubular port in communication with the second piston. The first extant has a length L1 and wherein the second extant has a length L2. The first tubular port extends for a length L4, and the recess extends for a length L3, where L4≥L2, and where L3>L2>L1. The first piston and the second piston are housed in the recess.
The actuator may be included in an electro-hydraulically actuated engine valve, comprising a hydraulic connector comprising a first hydraulic fluid port, a second hydraulic fluid port, and a hydraulic fluid outlet. A spool valve assembly can comprise a first spool inlet, a second spool inlet, a spool outlet, a first spool port, a second spool port, an actuatable spool, and actuation devices. A valve stem assembly abuts the actuator housing, and a valve stem is slidably housed in the valve stem assembly. The valve stem abuts the second piston. The valve stem comprises a valve head configured to adjust an opening or closing of a fluid exchange area of an engine block. The first spool inlet aligns with the first hydraulic fluid port, the second spool inlet aligns with the second hydraulic fluid port, and the spool outlet aligns with the hydraulic fluid outlet. The spool comprises grooves, and the spool is slidable in the spool valve assembly to slide the grooves in to and out of alignment with the first spool inlet, the second spool inlet, the spool outlet, the first spool port, and the second spool port.
A method of operating an electro-hydraulic actuator, using the above actuator, comprises the steps of supplying fluid at a first pressure to the first tubular port, and supplying fluid at a second pressure to the second tubular port.
Additional objects and advantages will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure. The objects and advantages will also be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claimed invention.
Reference will now be made in detail to the examples which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. Directional references such as “left” and “right” are for ease of reference to the figures. The drawings are not to scale.
An actuator 10 for an engine valve 15 comprises a primary actuator (first piston) 11 and a secondary actuator (second piston) 12. A fluid, such as oil or other hydraulic fluid, is fed to the actuator 10 via a spool valve assembly 13, which can be electromagnetically controlled. An actuator base 14 houses the first and second pistons 11, 12 relative to an engine 17 to enable the pistons to move the valve 15 for exchanging combustion fluids or exhaust in a fluid exchange area 19. Among other reasons, the actuator 10 is tailored and controlled for providing a specific valve seating velocity and extent of valve motion for use in either an intake manifold or exhaust manifold.
One use of the actuator can be for engine braking, where the valve is moved slightly to release fluid pressure from the combustion chamber, which slows the crankshaft rotations per minute (RPM). By slowing the RPM of the crankshaft, driveline parts coupled indirectly thereto can also slow, thus providing a braking effect to the vehicle. The actuator of the disclosure provides a reduction in noise associated with engine braking.
The actuator 10 of
First piston comprises a first extant 111 with a first outer diameter D1 and a second extant 112 comprising a second outer diameter D2, where D1>D2. Because of the diameter differences, first piston 11 has an inverted “T” shape. The first extant 111 has a length L1 and the second extant 112 has a length L2. The overall length of the first piston is L1+L2.
Second piston 12 has a length L7 and is slidable with and within first piston 11. When the first piston 11 moves a distance away from first tubular port 23, the second piston 12 also moves the distance via mating first edge 128 with third edge 228. And, when appropriate fluid pressure is supplied via second tubular port 24, the second piston is slidable within the first piston to reciprocate between a first position mating first edge 128 and third edge 228 and a second position mating second edge 129 and ring surface 51. Ring 50 can be press-fit to piston 12, or ring 50 can be rolled or crimped at location 52, or ring 50 can be pinned to piston 12.
The inner surface of first piston 11 can be distanced from second piston 12 to create a fluid recess 27. Fluid access to the fluid recess can be as illustrated in
The first tubular port 23 can be parallel to the second tubular port 24. An axis A-A of the concentric first and second piston 11 and 12 can be parallel to a central first axis B-B of first tubular port 23 and can be parallel to a central second axis C-C of second tubular port 24. When fluid supply is controlled to the actuator, the first and second pistons can reciprocate in the recess 22 along the axis A-A.
A first cylindrical portion 121 with a diameter D4 can abut the inner surface of first piston 11. A fluid seal 29 comprising a gland and o-ring, can prevent fluid from passing from the fluid recess 27 to the valve stem 16 and to valve stem assembly 18. A second cylindrical portion 122 has a diameter D3, and other diameter changes can be as illustrated. The diameter changes impact the actuation efficiency of the actuator 10. For example, because D3 is less than D1, the actuation efficiency is improved. And, because D4 is less than D1, actuation efficiency is improved. That is, prior art devices provided engine valve actuation using a single piston having the diameter D1. Such a prior art piston required more power to actuate than the illustrated two-step actuator having a larger diameter piston and a smaller diameter piston.
An actuator housing 14 comprises a recess 22 for housing the first and second piston 11, 12. A first tubular port 23 is in fluid communication with an interface 25 of the first piston 11. A second tubular port 24 is in fluid communication with an interface 26 of the second piston 12. The first tubular port extends for a length L4 alongside the second extant 112, where L4≥L2. The first tubular port 23 and the second tubular port 24 are parallel to one another along their respective center axis B-B and C-C. Second tubular port 24 is alongside the first tubular port 23 within the actuator housing 14, but first tubular port 23 is longer than second tubular port 24 by at least the length L2 of second extant 112. The recess 22 is longer than the overall length of first piston 11 and extends for a length L3, where L3>L2>L1 and L3>(L2+L1). The recess 22 is longer than the first piston by at least the length of first travel range T1.
Recess 22 comprises an upper recess 20 with a length L5 and a lower recess 21 with a length L6, wherein the first extant 111 is slidable in the lower recess 21, wherein the second piston 12 is slidable through the lower recess 21, wherein the second extant 112 is slidable in the upper recess 20, and wherein the second piston 12 is slidable in the upper recess 20. To seal the hydraulic fluid in the actuator housing 14, the first extant 111 can include a fluid seal 30 having a gland and o-ring and the cylinder 121 can comprise the fluid seal 29 having a gland and o-ring.
When fluid of sufficient pressure is supplied to the first tubular port 31, the fluid presses against the interface 25 and moves first piston a travel distance in the range T1, and the piston travels towards engine block 17. Because edge 228 of second piston 12 abuts edge 128 of first piston 11, second piston 12 moves with first piston 11 to move valve 15. The range of distance travel of first piston 11 is limited, and can be sufficient to enable engine braking by releasing pressure out of a compression cylinder associated with valve 15. Such a state is shown in
To effectuate the travel in first travel range T1, the fluid pressure to first tubular port 23 is sufficient to overcome valve head force, or pressure from the combustion chamber of engine 17, and to overcome the spring preload, or spring force in valve stem assembly 18. Fluid pressure to second tubular port 24 can be ambient pressure, or another pressure less than the actuation pressure, to avoid full valve lift during engine braking.
Supplying fluid of sufficient pressure to second tubular port 24 creates pressure against interface 26. This fluid pressure overcomes any valve head force present and overcomes the spring preload. For full valve lift, the pressure to second tubular port 24 can be the same as that supplied to first tubular port 23, or, the pressure to second tubular port 24 can be ambient.
Fluid enters the upper recess 21 and presses against both first piston 11 and second piston 12. The fluid pressure is primarily used to move second piston 12 toward engine block 17 so that valve stem 16 opens valve 15 fully for exchange of combustion gases or exhaust in fluid exchange area 19. This condition is shown in
The actuator 10 can form part of an electro-hydraulically actuated engine valve, as illustrated in
A hydraulic connector 42 comprises a first hydraulic fluid port 31, a second hydraulic fluid port 32, and a hydraulic fluid outlet 33. The first hydraulic fluid port 31 and the second hydraulic fluid port 32 are configured to connect to a source of hydraulic fluid, such as a controllable fluid pump P. The hydraulic fluid outlet 33 is configured to connect to a sump S. The hydraulic fluid may circulate from the sump S to the pumps P via supply lines 310, and the pumps P can be controlled via appropriate control electronics affiliated with control signal lines 303. Glands 41 house o-rings to provide fluid separation and sealing.
A spool valve assembly 13 comprises a first spool inlet 34, a second spool inlet 35, a spool outlet 36, a first spool port 37, a second spool port 38, an actuatable spool 391, grooves 390, actuation devices M, and connections to control devices and control signal lines 303. Appropriate electrical signals to actuation devices, such as the illustrated electromagnets M, cause the spool 391 to turn or slide on the spool pin 39 in the housing of the spool valve assembly 13. Spool can selectively abut one or more of the spool outlet, first and second spool ports, and first and second spool inlets of the spool valve assembly to block the passage of hydraulic fluid, or grooves 390 in the spool 391 can be positioned to permit hydraulic fluid passage within spool valve assembly 13. The location and size of the grooves 390 can be tailored for selective passage of hydraulic fluid, such that one, none, or both of the first and second spool ports communicate with the first and second spool inlets or spool outlet at any given time. That is, the spool grooves and spool actuation can be designed and controlled to achieve the operation methods for fluid flow such that the control devices control the actuation devices M to slide the grooves 390 in to and out of alignment with the first spool inlet 34, the second spool inlet 35, the spool outlet 36, the first spool port 37, and the second spool port 38.
With respect to the hydraulic connector 42, the first spool inlet 34 aligns with the first hydraulic fluid port 31, the second spool inlet 35 aligns with the second hydraulic fluid port 32, and the spool outlet 36 aligns with the hydraulic fluid outlet 33.
For directing fluid, the grooves 390 can be assigned to one or more sets. A particular groove 390 can be part of one or more sets such that as the spool slides, the groove is sized to permit fluid passage for a particular fluid passageway despite another groove changing its fluid-blocking or fluid-passing capability. When a first set of the grooves align with the first spool inlet 34 and the first spool port 37, the actuator is configured to connect the source of hydraulic fluid to the first tubular port 23. When a second set of the grooves align with the second spool inlet 35 and the second spool port 38, the actuator is configured to connect the source of hydraulic fluid to the second tubular port 24. When a third set of the grooves align with the first spool port 37, the second spool port 38, and the spool outlet 36, the actuator is configured to connect to the sump S. The grooves 390 can be tailored to allow fluid flow to both tubular ports 23, 24 simultaneously, but at different pressures.
The pumps P can direct the fluid flow by setting the supply line 310 pressure between the pumps P and the tubular ports 23, 24. Pumps P can then be controlled to direct the pressure and amount of hydraulic fluid to actuate or deactivate the first piston 11 and or second piston 12. In another embodiment, the hydraulic fluid outlet is affiliated with a pump for assisting with fluid return from the actuator 10 to the sump S.
The unactuated condition is shown in
A valve stem assembly 18 abuts the actuator housing 14. A valve stem 16 is slidably housed in the valve stem assembly 18. Customary valve stem assembly features, such as braces, caps, springs, guides etc. align the valve stem and cooperate with the actuator 10 to move the valve 15 up and down. The valve stem 16 abuts the second piston 12 so that a surface of the second piston 12 can push against the valve stem 16. Valve stem comprises a valve head 15 configured to adjust an opening or closing of a fluid exchange area 19 of an engine block 17.
A method of operating an electro-hydraulic actuator can be executed by an onboard computing chip, such as electronic control unit (ECU) 300. ECU 300 communicates with other vehicle parts, such as sensors affiliated the engine, manifolds, fuel injectors, brakes, accelerator, etc. to determine when hydraulic fluid should be supplied to first and or second tubular ports 23, 24. Thus a memory device, such as a RAM, ROM, EPROM, etc. stores computer executable programming, predetermined values, updated system data such as sensor inputs, etc. to determine timing, pressure, and amount of hydraulic fluid necessary to move first and or second piston 11, 12. A processor 301 assists with data processing and executes the stored programming.
For example, when it is advantageous to provide engine braking, a method comprises supplying fluid at a first pressure to the first tubular port and supplying fluid at a second pressure to the second tubular port. Because of the diameter differences between the first extant 111, second extant 112, first cylindrical portion 122, and second cylindrical portion 121, the minimum pressure necessary to move each of the first and second piston 11, 12 can be selected to provide only engine braking, or alternatively full valve lift.
Since the first piston 11 provides a small range of motion with a slower valve seating rate, it is advantageous to move only first piston 11 to provide engine braking. Thus, the second pressure is less than the first pressure. And, the first pressure to the first tubular port moves the first piston a distance in a first travel range T1. As a working example only, and not to limit the lengths, diameters, or ranges available, the first pressure is about 1500 psi (pounds per square inch) and moves the first piston first travel T1=1 mm. The second pressure is set equal to ambient pressure, though it can alternatively receive the same pressure of 1500 psi.
Another method comprises the second pressure set equal to the first pressure at 2000 psi. The first piston moves a distance in a first travel range T1=1 mm, and the second piston moves a distance in a second range T2=9 mm. Thus, full valve lift is achieved, and the engine has all available capacity for fluid exchange at fluid exchange area 19. Other travel ranges T1, T2 can be selected based on required performance.
Another method sets the second pressure higher than the first pressure, but the second pressure is high enough to move second piston 12 and, via abutment of ring surface 51 with second edge 129, to move first piston 11.
Other implementations will be apparent to those skilled in the art from consideration of the specification and practice of the examples disclosed herein. For example, while the actuator is shown mounted directly to an engine valve, it is possible in an alternative to use the actuator with a bridge. The actuator can be used with a rocker arm to open two valves, or the actuator can be used on top of a rocker arm. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This is a § 371 Application of PCT/US2014/060830 filed Oct. 16, 2014 and claims the benefit of U.S. provisional application No. 61/892,371 filed Oct. 17, 2013 and U.S. provisional application No. 61/935,659 filed Feb. 4, 2014, all of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/060830 | 10/16/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/057925 | 4/23/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5682846 | Scharnweber | Nov 1997 | A |
6536388 | Lou | Mar 2003 | B2 |
7213549 | Lou | May 2007 | B2 |
7243624 | Kenchington | Jul 2007 | B2 |
7290509 | Lou | Nov 2007 | B2 |
7370615 | Lou | May 2008 | B2 |
8056515 | Hedman | Nov 2011 | B2 |
20020073946 | Lou | Jun 2002 | A1 |
20040050349 | Leman et al. | Mar 2004 | A1 |
20040060529 | Nan | Apr 2004 | A1 |
20060011060 | Kenchington | Jan 2006 | A1 |
20070022986 | Lou | Feb 2007 | A1 |
20070022987 | Lou | Feb 2007 | A1 |
20070022988 | Lou | Feb 2007 | A1 |
20100199933 | Alajoki | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
101375024 | Feb 2009 | CN |
204357518 | May 2015 | CN |
2015057925 | Apr 2015 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for PCT/US2014/060830 dated Jan. 26, 2015, pp. 1-18. |
Number | Date | Country | |
---|---|---|---|
20160245133 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
61892371 | Oct 2013 | US | |
61935659 | Feb 2014 | US |