(1) Field of the Invention
The invention relates to a method for increasing the flexibility of air conditioning systems that employ humidity removal.
(2) Description of the Related Art
Conventional air conditioning systems comprise three basic components which function in unison to provide cooling. These three system components include the compressor, the condenser, and the evaporator. With reference to
Refrigerant enters the compressor 11 as a low pressure and temperature gas and is compressed. After compression, the refrigerant leaves the compressor 11 as a high temperature and pressure gas.
The refrigerant moves in its gaseous state to the condenser 13. At the condenser 13, the received refrigerant gas decreases in energy at a constant pressure and becomes totally subcooled as it leaves the condenser. Thereafter, the liquid refrigerant proceeds to the evaporator 17.
At the evaporator 17, the refrigerant pressure is reduced by expansion device 16. In the evaporator, energy is picked up from the air stream and the refrigerant leaves in a gaseous state. At the evaporator 17, the air to be cooled is, for example, initially at about 80 degrees Fahrenheit. Such air is moved by a fan through the evaporator 17 and becomes cooled to about 50 to 55 degrees Fahrenheit or lower.
Often times when the air requires greater dehumidification, heat exchanger 15 is provided to further subcool the refrigerant. The air passing over evaporator 17 exhibits more in latent and sensible cooling with the heat exchanger energized. However, the energy removed from the refrigerant by heat exchanger 15 is returned to the air stream after the air leaves evaporator 17. Thus, with heat exchanger 15 energized, the air leaving is at a higher dry bulb temperature (less sensible) and is low moisture centered (more latent), than with heat exchanger 15 unenergized.
Accordingly, it is an object of the present invention to provide a method for increasing the flexibility of an air conditioning systems that employ humidity removal.
In accordance with the present invention, an air conditioning apparatus comprises a continuous circuit through which a refrigerant flows from a compressor, through a condenser, through a heat exchanger, through an evaporator, and returning to the compressor, a bypass circuit through which a portion of the refrigerant flows from a point upstream of the condenser to mix with the refrigerant at a point downstream of the condenser, and a discharge gas valve for controlling the portion of the refrigerant flowing through the bypass circuit.
In further accordance with the present invention, a method for removing humidity from air comprises the steps of providing an air conditioning system comprising a continuous circuit through which a refrigerant flows from a compressor, through a condenser, through a heat exchanger, through an evaporator, and returning to the compressor, providing a bypass circuit through which a portion of the refrigerant flows from a point upstream of the condenser to mix with the refrigerant at a point downstream of the condenser, providing a discharge gas valve for controlling the portion of the refrigerant flowing through the bypass circuit, and providing at least one damper which may be opened in an economizer mode, and operating the air conditioning system to remove a portion of the humidity from the air.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
It is therefore a teaching of the present invention to provide a method, and a system for utilizing such method, for utilizing previously wasted heat in an air conditioning system to negate the undesirable effects of sensible cooling.
It is sometimes desirable to provide no sensible cooling and just remove moisture. In such a case, additional heat is added to the air by energizing valve 19 as illustrated with reference to
Thus with this scheme various levels of moisture removal and sensible cooling is available.
With reference to
As noted above, prior art implementations making use of a heat exchanger 15, wherein the heat exchanger 15 is configured to contain a sub-cool unit or coil as well, make use of a bypass valve to bypass the sub-cooler coil during normal operation during which there is no need for dehumidification. When a need for dehumidification arises, the normally open bypass valve 21, preferably a solenoid valve, is closed and the subcooling coil in the heat exchanger 15 is activated to yield increased latent capacity and less sensible capacity.
With reference to
When solenoid 21 closes, the refrigerant is further cooled from point 2 to point 3 and enters the evaporator at a lower enthalpy. The evaporator then absorbs more energy from the air. However, this energy is returned to the air after it passes over the heat exchanger 15 and thus more latent and less sensible. As noted above, the present invention includes a discharge gas valve 19 which, when open, allows for a portion of the hot gas leaving the compressor to bypass the condenser 13. The bypass gas is mixed with the liquid refrigerant exiting the condenser. The resultant mixture, now two phase, enters the heat exchanger 15 and is condensed and subcooled.
With reference to
As a result, the addition of mixing the hot gas refrigerant with the refrigerant exiting the condenser 13 increases the distance from point 3 to point 4 in
The decision to open, or activate, discharge gas valve 19 depends primarily upon the need for dehumidification in the space to be cooled, the outside air temperature, and the ability to perform subcooling in the heat exchanger 15. When dehumidification is desired with no need for cooling, the air conditioning system 10 operates with discharge gas valve 19 opened to provide for bypass. If dehumidification and cooling is desired and the outside air temperature is low, one must ascertain the availability of an economizer mode whereby dampers are opened to bring in cool outside air. If an economizer is available, it is activated with discharge gas valve 19 opened to provide for bypass. If dehumidification and cooling is desired and the outside air temperature is warm, discharge gas valve 19 is closed, the economizer is closed, and the heat exchanger 15 is operated in the subcooling mode. When dehumidification is not required, discharge gas valve 19 is closed. By “cool” and “warm”, it is meant that the outside air is below or above, respectively, the desired temperature or enthalpy of the air to be cooled by the air conditioning system 10.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.