Two piece cancellous construct for cartilage repair

Information

  • Patent Grant
  • 8906110
  • Patent Number
    8,906,110
  • Date Filed
    Tuesday, September 14, 2010
    13 years ago
  • Date Issued
    Tuesday, December 9, 2014
    9 years ago
Abstract
The invention is directed toward a cartilage repair assembly comprising a shaped allograft two piece construct with a demineralized cancellous cap and a mineralized cylindrical base member defining a blind bore with a through-going transverse bore intersecting the blind bore. The demineralized cancellous cap has a cylindrical top portion and a smaller diameter cylindrical stem extending away from the top portion which fits into the blind bore of the mineralized base member. The cap stem defines a transverse through-going bore which is aligned with the through-going bore of the base member to receive a cylindrical cortical pin holding the cap within the base member. The shaped structure is dimensioned to fit in a drilled bore in a cartilage defect area so that the assembly engages the side wall of the drilled bore in an interference fit.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention is generally directed toward an allograft cartilage repair implant and is more specifically directed toward a two piece allograft cancellous bone implant having a demineralized cancellous bone cap member and a mineralized or partially demineralized cancellous bone base member, both pieces being held together with an allograft bone pin. The construct is shaped for an interference fit implantation in a shoulder, knee, hip, or ankle joint. The base member is provided with an axially positioned blind bore and a plurality of smaller diameter through-going bores which allow transport of cellular materials throughout the implant site to stimulate cartilage growth.


2. Description of the Prior Art


Articular cartilage injury and degeneration present medical problems to the general population which are constantly addressed by orthopedic surgeons. Every year in the United States, over 500,000 arthroplastic or joint repair procedures are performed. These include approximately 125,000 total hip and 150,000 total knee arthroplastics and over 41,000 open arthroscopic procedure to repair cartilaginous defects of the knee.


In the knee joint, the articular cartilage tissue forms a lining which faces the joint cavity on one side and is linked to the subehondral bone plate by a narrow layer of calcified cartilage tissue on the other. Articular cartilage (hyaline cartilage) consists primarily of extracellular matrix with a sparse population of chondrocytes distributed throughout the tissue. Articular cartilage is composed of chondrocytes, type II collagen fibril meshwork, proteoglycans and water. Active chondrocytes are unique in that they have a relatively low turnover rate and are sparsely distributed within the surrounding matrix. The collagens give the tissue its form and tensile strength and the interaction of proteoglycans with water give the tissue its stiffness to compression, resilience and durability. The hyaline cartilage provides a low friction bearing surface over the bony parts of the joint. If the lining becomes worn or damaged resulting in lesions, joint movement may be painful or severely restricted. Whereas damaged bone typically can regenerate successfully, hyaline cartilage regeneration is quite limited because of it's limited regenerative and reparative abilities.


Articular cartilage lesions generally do not heal, or heal only partially under certain biological conditions due to the lack of nerves, blood vessels and a lymphatic system. The limited reparative capabilities of hyaline cartilage usually results in the generation of repair tissue that lacks the structure and biomechanical properties of normal cartilage. Generally, the healing of the defect results in a fibrocartilaginous repair tissue that lacks the structure and biomedical properties of hyaline cartilage and degrades over the course of time. Articular cartilage lesions are frequently associated with disability and with symptoms such as joint pain, locking phenomena and reduced or disturbed function. These lesions are difficult to treat because of the distinctive structure and function of hyaline cartilage. Such lesions are believed to progress to severe forms of osteoarthritis. Osteoarthritis is the leading cause of disability and impairment in middle-aged and older individuals, entailing significant economic, social and psychological costs. Each year, osteoarthritis accounts for as many as 39 million physician visits and more than 500,000 hospitalizations. By the year 2020, arthritis is expected to affect almost 60 million persons in the United States and to limit the activity of 11.6 million persons.


There are many current therapeutic methods being used. None of these therapies has resulted in the successful regeneration of hyaline-like tissue that withstands normal joint loading and activity over prolonged periods. Currently, the techniques most widely utilized clinically for cartilage defects and degeneration are not articular cartilage substitution procedures, but rather lavage, arthroscopic debridement, and repair stimulation. The direct transplantation of cells or tissue into a defect and the replacement of the defect with biologic or synthetic substitutions presently accounts for only a small percentage of surgical interventions. The optimum surgical goal is to replace the defects with cartilage-like substitutes so as to provide pain relief, reduce effusions and inflammation, restore function, reduce disability and postpone or alleviate the need for prosthetic replacement.


Lavage and arthroscopic debridement involve irrigation of the joint with solutions of sodium chloride, Ringer or Ringer and lactate. The temporary pain relief is believed to result from removing degenerative cartilage debris, proteolytic enzymes and inflammatory mediators. These techniques provide temporary pain relief, but have little or no potential for further healing.


Repair stimulation is conducted by means of drilling, abrasion arthroplasty or microfracture. Penetration into the subchondral bone induces bleeding and fibrin clot formation which promotes initial repair, however, the tissue formed is fibrous in nature and not durable. Pain relief is temporary as the tissue exhibits degeneration, loss of resilience, stiffness and wear characteristics over time.


The periosteum and perichondrium have been shown to contain mesenchymal progenitor cells capable of differentiation and proliferation. They have been used as grafts in both animal and human models to repair articular defects. Few patients over 40 years of age obtain good clinical results, which most likely reflect the decreasing population of osteochondral progenitor cells with increasing age. There have also been problems with adhesion and stability of the grafts, which result in their displacement or loss from the repair site.


Transplantation of cells grown in culture provides another method of introducing a new cell population into chondral and osteochondral defects. CARTICELL® is a commercial process to culture a patient's own cartilage cells for use in the repair of cartilage defects in the femoral condyle marketed by Genzyme Biosurgery in the United States and Europe. The procedure uses arthroscopy to take a biopsy from a healthy, less loaded area of articular cartilage. Enzymatic digestion of the harvested tissue releases the cells that are sent to a laboratory where they are grown for a period ranging from 2-5 weeks. Once cultivated, the cells are injected during a more open and extensive knee procedure into areas of defective cartilage where it is hoped that they will facilitate the repair of damaged tissue. An autologous periosteal flap with a cambium layer is used to seal the transplanted cells in place and act as a mechanical barrier. Fibrin glue is used to seal the edges of the flap. This technique preserves the subchondral bone plate and has reported a high success rate. Proponents of this procedure report that it produces satisfactory results, including the ability to return to demanding physical activities, in more than 90% of patients and those biopsy specimens of the tissue in the graft sites show hyaline-like cartilage repair. More work is needed to assess the function and durability of the new tissue and determine whether it improves joint function and delays or prevents joint degeneration. As with the perichondrial graft, patient/donor age may compromise the success of this procedure as chondrocyte population decreases with increasing age. Disadvantages to this procedure include the need for two separate surgical procedures, potential damage to surrounding cartilage when the periosteal patch is sutured in place, the requirement of demanding microsurgical techniques, and the expensive cost of the procedure which is currently not covered by insurance.


Osteochondral transplantation or mosaicplasty involves excising all injured or unstable tissue from the articular defect and creating cylindrical holes in the base of the defect and underlying bone. These holes are filled with autologous cylindrical plugs of healthy cartilage and bone in a mosaic fashion. The osteochondral plugs are harvested from a lower weight-bearing area of lesser importance in the same joint. This technique, shown in Prior Art FIG. 2, can be performed as arthroscopic or open procedures. Reports of results of osteochondral plug autografts in a small numbers of patients indicate that they decrease pain and improve joint function, however, long-term results have not been reported. Factors that can compromise the results include donor site morbidity, effects of joint incongruity on the opposing surface of the donor site, damage to the chondrocytes at the articular margins of the donor and recipient sites during preparation and implantation, and collapse or settling of the graft over time. The limited availability of sites for harvest of osteochondral autografts restricts the use of this approach to treatment of relatively small articular defects and the healing of the chondral portion of the autograft to the adjacent articular cartilage remains a concern.


Transplantation of large allografts of bone and overlying articular cartilage is another treatment option that involves a greater area than is suitable for autologous cylindrical plugs, as well as for a non-contained defect. The advantages of osteochondral allografts are the potential to restore the anatomic contour of the joint, lack of morbidity related to graft harvesting, greater availability than autografts and the ability to prepare allografts in any size to reconstruct large defects. Clinical experience with fresh and frozen osteochondral allografts shows that these grafts can decrease joint pain, and that the osseous portion of an allograft can heal to the host bone and the chondral portion can function as an articular surface. Drawbacks associated with this methodology in the clinical situation include the scarcity of fresh donor material and problems connected with the handling and storage of frozen tissue. Fresh allografts carry the risk of immune response or disease transmission. Musculoskeletal Transplant Foundation (MTF) has preserved fresh allografts in a media that maintains a cell viability of 50% for 35 days for use as implants. Frozen allografts lack cell viability and have shown a decreased amount of proteoglycan content which contribute to deterioration of the tissue.


A number of United States patents have been specifically directed towards bone plugs which are implanted into a bone defect. Examples of such bone plugs are U.S. Pat. No. 4,950,296 issued Aug. 21, 1990 which discloses a bone graft device comprising a cortical shell having a selected outer shape and a cavity formed therein for receiving a cancellous plug, which is fitted into the cavity in a manner to expose at least one surface; U.S. Pat. No. 6,039,762 issued Mar. 21, 2000 discloses a cylindrical shell with an interior body of deactivated bone material and U.S. Pat. No. 6,398,811 issued Jun. 4, 2002 directed toward a bone spacer which has a cylindrical cortical bone plug with an internal through-going bore designed to hold a reinforcing member. U.S. Pat. No. 6,383,211 issued May 7, 2002 discloses an invertebral implant having a substantially cylindrical body with a through-going bore dimensioned to receive bone growth materials.


U.S. Pat. No. 6,379,385 issued Apr. 30, 2002 discloses an implant base body of spongious bone material into which a load carrying support element is embedded. The support element can take the shape of a diagonal cross or a plurality of cylindrical pins. See also, U.S. Pat. No. 6,294,187 issued Sep. 25, 2001 which is directed to a load bearing osteoimplant made of compressed bone particles in the form of a cylinder. The cylinder is provided with a plurality of through-going bores to promote blood flow through the osteoimplant or to hold a demineralized bone and glycerol paste mixture. U.S. Pat. No. 6,096,081 issued Aug. 1, 2000 shows a bone dowel with a cortical end cap or caps at both ends, a brittle cancellous body and a through-going bore.


While these implants have been used for bone tissue regeneration, the same will not work to repair cartilage areas due to the osteoinductive nature of the bone which causes bone growth.


The use of implants for cartilage defects is much more limited. Aside from the fresh allograft implants and autologous implants, U.S. Pat. No. 6,110,209 issued Nov. 5, 1998 shows the use an autologous articular cartilage cancellous bone paste to fill arthritic defects. The surgical technique is arthroscopic and includes debriding (shaving away loose or fragmented articular cartilage), followed by morselizing the base of the arthritic defect with an awl until bleeding occurs. An osteochondral graft is then harvested from the inner rim of the intercondylar notch using a trephine. The graft is then morselized in a bone graft crusher, mixing the articular cartilage with the cancellous bone. The paste is then pushed into the defect and secured by the adhesive properties of the bleeding bone. The paste can also be mixed with a cartilage stimulating factor, a plurality of cells, or a biological glue. All patients are kept non-weight bearing for four weeks and used a continuous passive motion machine for six hours each night. Histologic appearance of the biopsies has mainly shown a mixture of fibrocartilage with hyaline cartilage. Concerns associated with this method are harvest site morbidity and availability, similar to the mosaicplasty method.


U.S. Pat. No. 6,379,367 issued Apr. 30, 2002 discloses a plug with a base membrane, a control plug, and a top membrane which overlies the surface of the cartilage covering the defective area of the joint.


SUMMARY OF THE INVENTION

A cartilage repair allograft construct implant comprising a two piece allograft bone construct with a mineralized cylindrical cancellous bone base member and a demineralized and non-osteoinductive cancellous bone cap member that is mounted in a blind bore cut in the cancellous bone base member. The base and cap members are held together by an allograft bone pin. The two piece construct is used for replacing articular cartilage defects and is placed in a bore which has been cut into the patient to remove the lesion defect area. The bone base member has an axially aligned blind bore, at least one transverse lateral bore which intersects the blind bore, and has a plurality of longitudinal through-going bores which extend parallel to the axis of the cylindrical bone base member. The cap member has a stem which fits into the blind bore of the base member with the stem defining a transverse radial bore. The bottom surface of the cap member overlies the upper surface of the cylindrical base member with the radial bore of the stem and the longitudinal bore(s) of the base member being aligned to receive a cortical bone pin. Additives may be applied to the lateral and/or radial bores, the blind bore or the cap member of the construct in order to increase or accelerate cartilaginous or bony tissue formation. Each allograft construct can support the addition of a variety of chondrogenic stimulating factors including, but not limited to, morselized allogenic cartilage, growth factors (FGF-2, FGF-5, IGF-1, TGF-β, BMP-2, BMP-7, PDGF, VEGF), human allogenic or autologous chondrocytes, human allogenic or autologous bone marrow cells, stem cells, demineralized bone matrix, insulin, insulin-like growth factor-1, transforming growth factor-B, interleukin-1 receptor antagonist, hepatocyte growth factor, platelet-derived growth factor, Indian hedgehog and parathyroid hormone-related peptide or bioactive glue. It is also an object of the invention to provide a cartilage repair implant which is easily placed in a defect area by the surgeon using an arthroscopic, minimally invasive technique.


It is also an object of the invention to provide a cartilage repair implant which is easily placed in a defect area by the surgeon using an arthroscopic, minimally invasive technique.


It is still another object of the invention to provide an allograft implant which has load bearing capabilities.


It is further an object of the invention to provide an allograft implant procedure which is applicable for both partial and full thickness lesions.


It is yet another object of the invention to provide an allograft implant which facilitates growth of hyaline cartilage.


It is an additional object of the invention to provide a cancellous construct which is treated with chondrogenic stimulating factors.


These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure along with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the present invention.



FIG. 1 is an anatomical illustration of a knee joint having articular cartilage in which a lesion has formed;



FIG. 2 is a schematic illustration of a mosaicplasty procedure, as known in the prior art;



FIG. 3 is an exploded perspective view of a cancellous construct produced in accordance with an exemplary embodiment of the present invention;



FIG. 4 is a top plan view of a base member employed by the construct of FIG. 3;



FIG. 5 is a side elevation view of a base member and a cap member employed by the construct of FIG. 3, wherein the cap member is mounted on the base member;



FIG. 6 is a side elevation view of the base member and cap member of the construct of FIG. 3, wherein the base member and cap member have been rotated 90° from their position shown in FIG. 5;



FIG. 7 is a top perspective view of the base member employed by the construct of FIG. 3;



FIG. 8 is a bottom perspective view of the cap member employed by the construct of FIG. 3;



FIG. 9 is a top plan view of the cap member of FIG. 8;



FIG. 10 is a side elevation view of the cap member of FIG. 8; and



FIG. 11 is a side elevational view of the cap member of FIG. 8, wherein the cap member has been rotated 90° from its position shown in FIG. 10.





DESCRIPTION OF THE INVENTION

The term “tissue” is used in the general sense herein to mean any transplantable or implantable tissue, the survivability of which is improved by the methods described herein upon implantation. In particular, the overall durability and longevity of the implant are improved, and host-immune system mediated responses, are substantially eliminated.


The terms “transplant” and “implant” are used interchangeably to refer to tissue, material or cells (xenogeneic or allogeneic) which may be introduced into the body of a patient.


The terms “autologous” and “autograft” refer to tissue or cells which originate with or are derived from the recipient, whereas the terms “allogeneic” and “allograft” refer to cells and tissue which originate with or are derived from a donor of the same species as the recipient. The terms “xenogeneic” and “xenograft” refer to cells or tissue which originates with or are derived from a species other than that of the recipient.


The present invention is directed towards a cartilage repair construct constructed of two separate pieces of allograft cancellous bone.


Both pieces of the two-piece allograft construct are to be derived from dense cancellous bone that may originate from proximal or distal femur, proximal or distal tibia, proximal humerus, talus, calceneus, patella, or iliium. Cancellous tissue is first processed into blocks and then milled into the desired shapes. The top piece or cap member is substantially demineralized in dilute acid until the bone contains less than 0.2% wt/wt residual calcium. Subsequently, the resultant tissue form is predominantly Type I collagen, which is sponge-like in nature with an elastic quality. Following decalcification, the tissue is further cleaned and may also be treated so that the cancellous tissue is non-osteoinductive. This inactivation of inherent osteoinductivity may be accomplished via chemical or thermal treatment or by high energy irradiation. In a preferred embodiment, the cancellous cap member is treated with an oxidizing agent such as hydrogen peroxide in order to achieve a non-osteoinductive material. The bottom piece will be formed from mineralized cancellous bone or partially demineralized cancellous bone.


The two piece allograft cancellous construct 20 has a base member 22 with a cap member 30 which is held fixed in place in the base member 22 by a pin 40. The base member 22 is preferably constructed of mineralized cancellous bone and is shaped in the form of a cylinder for easy insertion into bores cut into the patient to cut away cartilage defect areas. However, the base member 22 may be surface or partially demineralized or contain a region of cortical bone so that it is cortical/cancellous. The body of the base member 22 defines a blind bore 23 which holds a stem 36 of the cap member 30, as further described below. The bottom surface 24 of the blind bore, as seen in FIGS. 5-7, has a plurality of longitudinal through-going bores 25 extending through the base member 22 and ending on the distal end surface 26 of the base member, which is preferably planar. The top surface 27 of the base member 22 is also preferably planar, forming a seat for the cap member 30. A first lateral bore 28 extends generally transversely from an exterior wall of the base member 22, above the bottom surface 24 of the blind bore 23, and intersects the blind bore 23. A second lateral bore 29 extends generally transversely from the exterior wall of the base member 22, above the bottom surface 24 of the blind bore 23, and intersects the blind bore 23 so as to be opposite the first lateral bore 28 (see FIGS. 4, 5 and 7) and in coaxial alignment therewith. A second plurality of longitudinal through-going bores 31 are circumferentially positioned around the blind bore 23 parallel to the central axis of the base member 22 and extend from the top surface 27 to the bottom surface 26. The longitudinal through-going bores 25 and 31 have a smaller diameter than the blind bore 23, with a diameter ranging from 0.5 to 2.0 mm.


The cap member 30 has a cylindrical top section 32 which has a thickness of about 3 mm with a top planar surface 33, an outer curved wall 34 and a bottom planar surface 35 which is seated adjacent the top surface 27 of the base member 22 when the components are mounted together. The top surface 33, while preferably planar may be milled to a degree of curvature that matches the physiological curvature. Larger constructs may have a cap member that has multiple stem sections and a base with an inverse “female” pattern which receives the stem sections.


The cap member 30 includes an integral cylindrical stem 36 that depends from the bottom planar surface 35 of the top section 32. The stem 36 has a length which is not longer than the depth of the blind bore 23 and has a diameter which is equal to or less than the diameter of the blind bore 23. The stem 36 includes a transverse radial bore 37 which is aligned with the first and second lateral bores 28, 29 of the base member 22 to receive a cylindrical pin 40. More particularly, the pin 40 is inserted radially through the construct 20 to hold the cap member 30 in place within the base member 22 (see FIG. 3). The cap member 30 is preferably formed of demineralized cancellous allograft bone with a calcium content of less than 0.2% calcium. Alternatively, the cap member 30 has a substantially demineralized region, such as the top section 32, with a calcium content of less than 0.2% calcium. The cylindrical pin 40 is preferably constructed of cortical bone and has a length equal to or less than the diameter of the base member 22. The pin 40 can also be constructed of a synthetic material.


The cap member 30 can be secured to the base member 22 by a staple, suture, press fit or an adhesive compound such as fibrin based glue.


The construct 20 is placed in a defect area bore which has been cut in the lesion area of the bone of a patient with the upper surface 26 of the cap member 30 being slightly proud, slightly below, or substantially flush with the surface of the original cartilage remaining at the area being treated. The construct 20 has a length which can be the same as the depth of the defect or more or less than the depth of the bore. If the construct 20 is the same as the depth of the bore 60, the base of the implant is supported by the bottom surface of the bore and the top surface 33 of cap 30 is substantially level with the articular cartilage. If the construct 20 is of a lesser length, the base of the construct is not supported but support is provided by the wall of the defect area bore or respective cut out area as the plug is interference fit within the bore or cut out area with the cap being slightly proud, slightly below, or flush with the surrounding articular cartilage depending on the surgeon's preference. With such load bearing support the graft surface is not damaged by weight or bearing loads which can cause micromotion interfering with the graft interface producing fibrous tissue interfaces and subchondral cysts.


Including the pluralities of longitudinal through-going bores 25 and 31 in the construct 20 facilitates cell migration throughout the construct 20. Such cell migration promotes cartilage growth in the cartilage area and bone growth in the adjacent bone region.


In operation, the lesion or defect is removed by cutting a bore removing a lesion in the implant area. If desired, the open cancellous structure of the cap member 30 may be loaded with a cartilage paste or gel as noted below and/or one or more additives namely recombinant or native growth factors (FGF-2, FGF-5, FGF-7, IGF-1, TGF-β, BMP-2, BMP-4, BMP-7, PDGF, VEGF), human allogenic or autologous chondrocytes, human allogenic cells, human allogenic or autologous bone marrow cells, human allogenic or autologous stem cells, demineralized bone matrix, insulin, insulin-like growth factor-1, interleukin-1 receptor antagonist, hepatocyte growth factor, platelet-derived growth factor, Indian hedgehog parathyroid hormone-related peptide, viral vectors for growth factor or DNA delivery, nanoparticles, or platelet-rich plasma. The construct 20 is then placed in the bore or cut away area in an interference fit with the surrounding walls.


If the construct is moveable within the bore, suitable organic glue material can be used to keep the implant fixed in place in the implant area. Suitable organic glue material can be found commercially, such as for example; USSEEL® or TISSUCOL® (fibrin based adhesive; Immuno AG, Austria), Adhesive Protein (Sigma Chemical, USA), Dow Corning Medical Adhesive B (Dow Corning, USA), fibrinogen thrombin, elastin, collagen, casein, albumin, keratin and the like.


The base of the blind bore 23 of the construct 20 can alternatively be provided with a matrix of minced cartilage putty or gel consisting of minced or milled allograft cartilage which has been lyophilized so that its water content ranges from 0.1% to 8.0% ranging from 25% to 50% by weight, mixed with a carrier of sodium hyaluronate solution (HA) (molecular weight ranging from 7.0×105 to 1.2×106) or any other bioabsorbable carrier such as hyaluronic acid and its derivatives, gelatin, collagen, chitosan, alginate, buffered PBS, Dextran, or polymers, the carrier ranging from ranging from 75% to 50% by weight. The cartilage is milled to a size ranging up to 1 mm.


In the gel form, the minced cartilage has been lyophilized so that its water content ranges from 0.1% to 8.0%, ranging from 15% to 30% by weight and the carrier ranges from 85% to 70% by weight. The particle size of the cartilage when milled is less than or equal to 1 mm dry. The cartilage pieces can be processed to varying particle sizes and the HA or other carrier can have different viscosities depending on the desired consistency of the putty or gel. This cartilage matrix can be deposited into the demineralized cap member. The putty or gel enhances the tissue integration between the plug and host tissue.


It is also envisioned that demineralized bone matrix and/or growth factors such as (FGF-2, FGF-5, FGF-7, IGF-1, TGF-β, BMP-2, BMP-4, BMP-7, PDGF, VEGF) or soluble factors such as insulin, interleukin-1 receptor antagonist, hepatocyte growth factor, Indian hedgehog and parathyroid hormone-related peptide, viral vectors for growth factor or DNA delivery, nanoparticles may be adsorbed or combined with the construct or the cartilage pieces. In another embodiment, platelet-rich plasma may be added to the construct.


It is also envisioned that cells which have been grown outside the patient can be inserted by syringe into the cancellous cap member 30 before, during or after deposit of the construct 20 into the defect area. Such cells include allogenic or autologous, bone marrow cells, stem cells and chondrocyte cells. The cellular density of the cells preferably ranges from 1.0×108 to 5.0×108 or from about 100 million to about 500 million cells per cc of putty or gel mixture. The cap member 30 can support the previously mentioned chondrogenic stimulating factors.


The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claim:

Claims
  • 1. In a multi-component construct for cartilage and bone repair, said construct having an outer periphery whose size and shape are selected such that said construct is positionable in a defect site to be repaired, said construct including a cap member shaped to form a stem having a longitudinal axis, which defines an axial direction, and a top section attached to one end of said stem and extending radially outward therefrom, said top section having first and second opposed surfaces, said first surface being sized and shaped so as to be adjacent an original cartilage layer at the defect site when said construct is positioned therein, and a base member sized and shaped so as to be adjacent a subchondral bone layer at the defect site when said construct is positioned therein, said base member including a proximal end proximate said second surface of said top section when said multi-component construct is assembled, a distal end remote from said cap member when said multi-component construct is assembled, and a blind bore extending in said axial direction from said proximal end toward said distal end, said blind bore being sized and shaped so as to receive said stem of said cap member, the improvement wherein: said cap member is formed from a first piece of cancellous bone which is demineralized to thereby provide said top section and said stem of said cap member with an elastic quality, said top section including a first sidewall having a first diameter;said base member is formed from a second, separate piece of cancellous bone that is mineralized, whereby said base member does not have an elastic quality, said base member including a second sidewall having a second diameter which is substantially equal to, but not greater than, said first diameter, whereby said proximal end of said base member is substantially coextensive with said top section of said cap member and wherein said first and second diameters are selected such that said outer periphery of said construct is delimited by said first sidewall of said top section of said cap member, and by said second sidewall of said base member; andsaid second surface of said top section of said cap member is in direct contact with said proximal end of said base member upon assembly of said multi-component construct, whereby said base member supports said top section such that said first surface of said top section is substantially flush with an outer surface of the original cartilage layer at the defect site.
  • 2. The construct of claim 1, wherein said blind bore of said base member includes a bottom surface intermediate said proximal end of said base member and said distal end of said base member.
  • 3. The construct of claim 2, wherein an opposite end of said stem, remote from said top section of said cap member, is in direct contact with said bottom surface of said blind bore of said base member upon assembly of said multi-component construct.
  • 4. The construct of claim 1, wherein said first surface of said top section is a planar top surface.
  • 5. The construct of claim 1, wherein said first piece of cancellous bone has a calcium content of less than 0.2%.
  • 6. The construct of claim 1, wherein said cap member is treated to be non-osteoinductive.
RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 11/657,042 filed Jan. 24, 2007 now U.S. Pat. No. 7,837,740, the entire disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (682)
Number Name Date Kind
3400199 Balassa Sep 1968 A
3476855 Balassa Nov 1969 A
3478145 Balassa Nov 1969 A
3551560 Theile Dec 1970 A
3772432 Balassa Nov 1973 A
3867728 Stubstad et al. Feb 1975 A
3966908 Balassa Jun 1976 A
4060081 Yannas et al. Nov 1977 A
4172128 Theile et al. Oct 1979 A
4201845 Feder et al. May 1980 A
4296100 Franco Oct 1981 A
4378347 Franco Mar 1983 A
4394370 Jefferies Jul 1983 A
4400833 Kurland Aug 1983 A
4442655 Stroetmann Apr 1984 A
4458678 Yannas et al. Jul 1984 A
4479271 Bolesky et al. Oct 1984 A
4501269 Bagby Feb 1985 A
4505266 Yannas et al. Mar 1985 A
4600574 Lindner et al. Jul 1986 A
4609551 Caplan et al. Sep 1986 A
4627853 Campbell et al. Dec 1986 A
4642120 Nevo et al. Feb 1987 A
4656137 Balassa Apr 1987 A
4681763 Nathanson et al. Jul 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4757017 Cheung Jul 1988 A
4776173 Kamarei et al. Oct 1988 A
4776853 Klement et al. Oct 1988 A
4795467 Piez et al. Jan 1989 A
4801299 Brendel et al. Jan 1989 A
4837379 Wienberg Jun 1989 A
4846835 Grande Jul 1989 A
4880429 Stone Nov 1989 A
4902508 Badylak et al. Feb 1990 A
4904259 Itay Feb 1990 A
4932973 Gendler Jun 1990 A
4950296 McIntyre Aug 1990 A
4950483 Ksander et al. Aug 1990 A
4955911 Frey et al. Sep 1990 A
4963146 Li Oct 1990 A
4963489 Naughton et al. Oct 1990 A
4965188 Mullis et al. Oct 1990 A
4971954 Brodsky et al. Nov 1990 A
4976738 Frey et al. Dec 1990 A
4978355 Frey et al. Dec 1990 A
4994084 Brennan Feb 1991 A
4994559 Moscatelli et al. Feb 1991 A
5002071 Harrell Mar 1991 A
5002583 Pitaru et al. Mar 1991 A
5007934 Stone Apr 1991 A
5032508 Naughton et al. Jul 1991 A
5041138 Vacanti et al. Aug 1991 A
5053049 Campbell Oct 1991 A
5053050 Itay Oct 1991 A
5067963 Khouri et al. Nov 1991 A
5067964 Richmond et al. Nov 1991 A
5073373 O'Leary et al. Dec 1991 A
5084051 Tormala et al. Jan 1992 A
5092887 Gendler Mar 1992 A
5118512 O'Leary et al. Jun 1992 A
5152791 Hakamatsuka et al. Oct 1992 A
5155214 Baird et al. Oct 1992 A
5191067 Lappi et al. Mar 1993 A
5195892 Gershberg Mar 1993 A
5206023 Hunziker Apr 1993 A
5226914 Caplan et al. Jul 1993 A
5236456 O'Leary et al. Aug 1993 A
5256140 Fallick Oct 1993 A
5260420 Burnouf-Radosevich et al. Nov 1993 A
5266476 Sussman et al. Nov 1993 A
5270300 Hunziker Dec 1993 A
5275826 Badylak et al. Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5284155 Treadwell et al. Feb 1994 A
5290558 O'Leary et al. Mar 1994 A
5298254 Prewett et al. Mar 1994 A
5302702 Seddon et al. Apr 1994 A
5306304 Gendler Apr 1994 A
5306311 Stone et al. Apr 1994 A
5310883 Seddon et al. May 1994 A
5314476 Prewett et al. May 1994 A
5326357 Kandel Jul 1994 A
5329846 Bonutti Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5338772 Bauer et al. Aug 1994 A
5352463 Badylak et al. Oct 1994 A
5354557 Oppermann et al. Oct 1994 A
5356629 Sander et al. Oct 1994 A
5368858 Hunziker Nov 1994 A
5372821 Badylak et al. Dec 1994 A
5380328 Morgan Jan 1995 A
5411885 Marx May 1995 A
5425769 Snyders, Jr. Jun 1995 A
5439684 Prewett et al. Aug 1995 A
5439818 Fiddes et al. Aug 1995 A
5443950 Naughton et al. Aug 1995 A
5445833 Badylak et al. Aug 1995 A
5464439 Gendler Nov 1995 A
5466462 Rosenthal et al. Nov 1995 A
5491220 Seddon et al. Feb 1996 A
5496722 Goodwin et al. Mar 1996 A
5507813 Dowd et al. Apr 1996 A
5510396 Prewett et al. Apr 1996 A
5512460 Nauro et al. Apr 1996 A
5513662 Morse et al. May 1996 A
5516532 Atala et al. May 1996 A
5516533 Badylak et al. May 1996 A
5545222 Bonutti Aug 1996 A
5549904 Juergensen et al. Aug 1996 A
5554389 Badylak et al. Sep 1996 A
5556430 Gendler Sep 1996 A
5569272 Reed et al. Oct 1996 A
5571895 Kurokawa et al. Nov 1996 A
5576288 Lappi et al. Nov 1996 A
5604293 Fiddes et al. Feb 1997 A
5607474 Athanasiou et al. Mar 1997 A
5614496 Dunstan et al. Mar 1997 A
5618925 Dupont et al. Apr 1997 A
5622928 Naruo et al. Apr 1997 A
5624463 Stone et al. Apr 1997 A
5631011 Wadstrom May 1997 A
5632745 Schwartz May 1997 A
5656598 Dunstan et al. Aug 1997 A
5662710 Bonutti Sep 1997 A
5679637 Lappi et al. Oct 1997 A
5681353 Li et al. Oct 1997 A
5695998 Badylak et al. Dec 1997 A
5700476 Rosenthal et al. Dec 1997 A
5700774 Hattersley et al. Dec 1997 A
5707962 Chen et al. Jan 1998 A
5713374 Pachence et al. Feb 1998 A
5716413 Walter et al. Feb 1998 A
5723331 Tubo et al. Mar 1998 A
5728159 Stroever et al. Mar 1998 A
5733337 Carr, Jr. et al. Mar 1998 A
5736132 Juergensen et al. Apr 1998 A
5736372 Vacanti et al. Apr 1998 A
5736396 Bruder et al. Apr 1998 A
5749874 Schwartz May 1998 A
5755791 Whitson et al. May 1998 A
5759190 Vibe-Hansen et al. Jun 1998 A
5769899 Schwartz et al. Jun 1998 A
5770417 Vacanti et al. Jun 1998 A
5782835 Hart et al. Jul 1998 A
5782915 Stone Jul 1998 A
5786217 Tubo et al. Jul 1998 A
5788625 Plouhar et al. Aug 1998 A
5800537 Bell Sep 1998 A
5814084 Grivas et al. Sep 1998 A
5842477 Naughton et al. Dec 1998 A
5846931 Hattersley et al. Dec 1998 A
5853746 Hunziker Dec 1998 A
5855620 Bishopric et al. Jan 1999 A
5859208 Fiddes et al. Jan 1999 A
5863296 Orton Jan 1999 A
5863297 Walter et al. Jan 1999 A
5866415 Villeneuve Feb 1999 A
5876452 Athanasiou et al. Mar 1999 A
5881733 Stone Mar 1999 A
5888219 Bonutti Mar 1999 A
5891558 Bell et al. Apr 1999 A
5893888 Bell Apr 1999 A
5899936 Goldstein May 1999 A
5899939 Boyce et al. May 1999 A
5904716 Gendler May 1999 A
5906827 Khouri et al. May 1999 A
5910315 Stevenson et al. Jun 1999 A
5916265 Hu Jun 1999 A
5922028 Plouhar et al. Jul 1999 A
5948429 Bell et al. Sep 1999 A
5955438 Pitaru et al. Sep 1999 A
5964805 Stone Oct 1999 A
5968556 Atala et al. Oct 1999 A
5972368 McKay Oct 1999 A
5972385 Liu et al. Oct 1999 A
5974663 Ikeda et al. Nov 1999 A
5989269 Vibe-Hansen et al. Nov 1999 A
5989289 Coates et al. Nov 1999 A
5989866 Deisher et al. Nov 1999 A
5998170 Arakawa et al. Dec 1999 A
6001352 Boyan et al. Dec 1999 A
6005161 Brekke et al. Dec 1999 A
6013853 Athanasiou et al. Jan 2000 A
6017348 Hart et al. Jan 2000 A
6025334 Dupont et al. Feb 2000 A
6025538 Yaccarino, III Feb 2000 A
6027743 Khouri et al. Feb 2000 A
6030635 Gertzman et al. Feb 2000 A
6037171 Larsson Mar 2000 A
6039762 McKay Mar 2000 A
6056777 McDowell May 2000 A
6060640 Pauley et al. May 2000 A
6074663 Delmotte et al. Jun 2000 A
6080194 Pachence et al. Jun 2000 A
6090996 Li Jul 2000 A
6090998 Grooms et al. Jul 2000 A
6096081 Grivas et al. Aug 2000 A
6096347 Geddes et al. Aug 2000 A
6110209 Stone Aug 2000 A
6110482 Khouri et al. Aug 2000 A
6123731 Boyce et al. Sep 2000 A
6132472 Bonutti Oct 2000 A
6143293 Weiss et al. Nov 2000 A
6146385 Torrie et al. Nov 2000 A
6156068 Walter et al. Dec 2000 A
6165486 Marra et al. Dec 2000 A
6165487 Ashkar et al. Dec 2000 A
6176880 Plouhar et al. Jan 2001 B1
6180605 Chen et al. Jan 2001 B1
6183737 Zaleske et al. Feb 2001 B1
6189537 Wolfinbarger, Jr. Feb 2001 B1
6197061 Masuda et al. Mar 2001 B1
6197586 Bhatnagar et al. Mar 2001 B1
6200347 Anderson et al. Mar 2001 B1
6221854 Radomsky Apr 2001 B1
6231607 Ben-Bassat et al. May 2001 B1
6235316 Adkisson May 2001 B1
6242247 Rieser et al. Jun 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6258778 Rodgers et al. Jul 2001 B1
6261586 McKay Jul 2001 B1
6267786 Stone Jul 2001 B1
6270528 McKay Aug 2001 B1
6274090 Coelho et al. Aug 2001 B1
6274663 Hosokawa et al. Aug 2001 B1
6274712 Springer et al. Aug 2001 B1
6280473 Lemperle et al. Aug 2001 B1
6281195 Rueger et al. Aug 2001 B1
6283980 Vibe-Hansen et al. Sep 2001 B1
6288043 Spiro et al. Sep 2001 B1
6293970 Wolfinbarger, Jr. Sep 2001 B1
6294187 Boyce et al. Sep 2001 B1
6294359 Fiddes et al. Sep 2001 B1
6303585 Spiro et al. Oct 2001 B1
6305379 Wolfinbarger, Jr. Oct 2001 B1
6306174 Gei et al. Oct 2001 B1
6306177 Felt et al. Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6310267 Rapp Oct 2001 B1
6319712 Meenen et al. Nov 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6352558 Spector Mar 2002 B1
6352971 Diesher et al. Mar 2002 B1
6361565 Bonutti Mar 2002 B1
6365405 Salzmann et al. Apr 2002 B1
6371958 Overaker Apr 2002 B1
6376244 Atala Apr 2002 B1
6379367 Vibe-Hansen et al. Apr 2002 B1
6379385 Kalas et al. Apr 2002 B1
6383221 Scarborough et al. May 2002 B1
6387693 Rieser et al. May 2002 B2
6398811 McKay Jun 2002 B1
6398816 Brietbart et al. Jun 2002 B1
6398972 Blasetti et al. Jun 2002 B1
6432436 Gertzman et al. Aug 2002 B1
6437018 Gertzman et al. Aug 2002 B1
6440141 Philippon Aug 2002 B1
6440427 Wadstrom Aug 2002 B1
6440444 Boyce et al. Aug 2002 B2
6451060 Masuda et al. Sep 2002 B2
6454811 Sherwood et al. Sep 2002 B1
6458144 Morris et al. Oct 2002 B1
6458158 Anderson et al. Oct 2002 B1
6458375 Gertzman et al. Oct 2002 B1
6468314 Schwartz et al. Oct 2002 B2
6471993 Shastri et al. Oct 2002 B1
6475175 Rivera et al. Nov 2002 B1
6486377 Rapp Nov 2002 B2
6488033 Cerundolo Dec 2002 B1
6489165 Bhatnagar Dec 2002 B2
6497726 Carter et al. Dec 2002 B1
6503277 Bonutti Jan 2003 B2
6504079 Tucker et al. Jan 2003 B2
6511511 Slivka et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6520964 Tallarida et al. Feb 2003 B2
6530956 Mansmann Mar 2003 B1
6534084 Vyakarnam et al. Mar 2003 B1
6541024 Kadiyala et al. Apr 2003 B1
6548729 Seelich et al. Apr 2003 B1
6569172 Asculai et al. May 2003 B2
6576015 Geistlich et al. Jun 2003 B2
6576265 Spievack Jun 2003 B1
6579538 Spievack Jun 2003 B1
6582960 Martin et al. Jun 2003 B1
6591581 Schmieding Jul 2003 B2
6592598 Vibe-Hansen et al. Jul 2003 B2
6592599 Vibe-Hansen et al. Jul 2003 B2
6599300 Vibe-Hansen et al. Jul 2003 B2
6599301 Vibe-Hansen et al. Jul 2003 B2
6599515 Delmotte Jul 2003 B1
6623963 Muller et al. Sep 2003 B1
6626950 Brown et al. Sep 2003 B2
6630000 Bonutti Oct 2003 B1
6632247 Boyer, II et al. Oct 2003 B2
6652592 Grooms et al. Nov 2003 B1
6652593 Boyer, II et al. Nov 2003 B2
6652872 Nevo et al. Nov 2003 B2
6662805 Frondoza et al. Dec 2003 B2
6666892 Hiles et al. Dec 2003 B2
6686184 Anderson et al. Feb 2004 B1
6689747 Filvaroff et al. Feb 2004 B2
6696073 Boyce et al. Feb 2004 B2
6712851 Lemperle et al. Mar 2004 B1
6727224 Zhang et al. Apr 2004 B1
RE38522 Gertzman et al. May 2004 E
6730314 Jeschke et al. May 2004 B2
6734018 Wolfinbarger, Jr. et al. May 2004 B2
6743232 Overaker et al. Jun 2004 B2
6752834 Geistlich et al. Jun 2004 B2
6761739 Shepard Jul 2004 B2
6761887 Kavalkovich et al. Jul 2004 B1
6767369 Boyer et al. Jul 2004 B2
6776800 Boyer, II et al. Aug 2004 B2
6783712 Slivka et al. Aug 2004 B2
6808585 Boyce et al. Oct 2004 B2
6815416 Carney et al. Nov 2004 B2
6838440 Stiles Jan 2005 B2
6841150 Halvorsen et al. Jan 2005 B2
6849255 Gazit et al. Feb 2005 B2
6852114 Cerundolo Feb 2005 B2
6852125 Simon et al. Feb 2005 B2
6852331 Lai et al. Feb 2005 B2
6855167 Shimp et al. Feb 2005 B2
6855169 Boyer, II et al. Feb 2005 B2
6858042 Nadler et al. Feb 2005 B2
6866668 Giannetti et al. Mar 2005 B2
6884428 Binette et al. Apr 2005 B2
6890354 Steiner et al. May 2005 B2
6893462 Buskirk et al. May 2005 B2
6902578 Anderson et al. Jun 2005 B1
6911212 Gertzman et al. Jun 2005 B2
6932977 Heidaran et al. Aug 2005 B2
6933326 Griffey et al. Aug 2005 B1
6949252 Mizuno et al. Sep 2005 B2
6989034 Hammer et al. Jan 2006 B2
6993328 Oommen Jan 2006 B1
6995013 Connelly et al. Feb 2006 B2
7009039 Yayon et al. Mar 2006 B2
7018416 Hanson et al. Mar 2006 B2
7033587 Halvorsen et al. Apr 2006 B2
7041641 Rueger et al. May 2006 B2
7044968 Yaccarino, III et al. May 2006 B1
7045141 Merboth et al. May 2006 B2
7048750 Vibe-Hansen et al. May 2006 B2
7048762 Sander et al. May 2006 B1
7048765 Grooms et al. May 2006 B1
7067123 Gomes et al. Jun 2006 B2
7070942 Heidaran et al. Jul 2006 B2
7078232 Konkle et al. Jul 2006 B2
7087082 Paul et al. Aug 2006 B2
7087227 Adkisson Aug 2006 B2
7108721 Huckle et al. Sep 2006 B2
RE39321 MacPhee et al. Oct 2006 E
7115146 Boyer, II et al. Oct 2006 B2
7125423 Hazebrouck Oct 2006 B2
7132110 Kay et al. Nov 2006 B2
7137989 Asculai et al. Nov 2006 B2
7141072 Geistlich et al. Nov 2006 B2
7148209 Hoemann et al. Dec 2006 B2
7156880 Evans et al. Jan 2007 B2
7157428 Kusanagi et al. Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7179299 Edwards et al. Feb 2007 B2
7182781 Bianchi et al. Feb 2007 B1
RE39587 Gertzman et al. Apr 2007 E
7201917 Malaviya et al. Apr 2007 B2
7217294 Kusanagi et al. May 2007 B2
7220558 Luyten et al. May 2007 B2
7226482 Messerli et al. Jun 2007 B2
7241316 Evans et al. Jul 2007 B2
7252987 Bachalo et al. Aug 2007 B2
7264634 Schmieding Sep 2007 B2
7273756 Adkisson et al. Sep 2007 B2
7288406 Bogin et al. Oct 2007 B2
7291169 Hodorek Nov 2007 B2
7297161 Fell Nov 2007 B2
7316822 Binette et al. Jan 2008 B2
7323011 Shepard et al. Jan 2008 B2
7323445 Zhang et al. Jan 2008 B2
7335508 Yayon et al. Feb 2008 B2
7338492 Singhatat Mar 2008 B2
7338524 Fell et al. Mar 2008 B2
7358284 Griffey et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7365051 Paulista et al. Apr 2008 B2
7371400 Borenstein et al. May 2008 B2
7416889 Ciombor et al. Aug 2008 B2
7468075 Lang et al. Dec 2008 B2
7468192 Mizuno et al. Dec 2008 B2
7476257 Sah et al. Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7485310 Luyten et al. Feb 2009 B2
7488348 Truncale et al. Feb 2009 B2
7513910 Buskirk et al. Apr 2009 B2
7531000 Hodorek May 2009 B2
7537617 Bindsell et al. May 2009 B2
7537780 Mizuno et al. May 2009 B2
7548865 Schmieding Jun 2009 B2
7550007 Malinin Jun 2009 B2
7563455 McKay Jul 2009 B2
7563769 Bogin et al. Jul 2009 B2
7601173 Messerli et al. Oct 2009 B2
7608113 Boyer, II et al. Oct 2009 B2
7621963 Simon et al. Nov 2009 B2
7622438 Lazarov et al. Nov 2009 B1
7622562 Thorne et al. Nov 2009 B2
7628851 Armitage et al. Dec 2009 B2
7632311 Seedhom et al. Dec 2009 B2
7638486 Lazarov et al. Dec 2009 B2
7642092 Maor Jan 2010 B2
7648700 Vignery et al. Jan 2010 B2
7648965 Vignery et al. Jan 2010 B2
7658768 Miller et al. Feb 2010 B2
7662184 Edwards et al. Feb 2010 B2
7666230 Orban et al. Feb 2010 B2
RE41286 Atkinson et al. Apr 2010 E
7815926 Syring et al. Oct 2010 B2
7824701 Binette et al. Nov 2010 B2
7837740 Semler et al. Nov 2010 B2
7875296 Binette et al. Jan 2011 B2
RE42208 Truncale et al. Mar 2011 E
7901457 Truncale et al. Mar 2011 B2
7901461 Harmon et al. Mar 2011 B2
8039016 Drapeau et al. Oct 2011 B2
8137702 Binette et al. Mar 2012 B2
8163549 Yao et al. Apr 2012 B2
8258117 Hoemann Sep 2012 B2
RE43714 Nadler Oct 2012 E
8282953 Drapeau Oct 2012 B2
8318212 Malinin Nov 2012 B2
8337784 Johnson Dec 2012 B2
8343218 Lang Jan 2013 B2
8419802 Evans Apr 2013 B2
8431147 Drapeau Apr 2013 B2
8480757 Gage Jul 2013 B2
8496970 Binette et al. Jul 2013 B2
8497121 Yao et al. Jul 2013 B2
8518433 Kizer Aug 2013 B2
8524268 Kizer Sep 2013 B2
8556972 Gordon Oct 2013 B2
8591581 Strzepa Nov 2013 B2
8652500 Bosley, Jr. Feb 2014 B2
8652507 Kizer Feb 2014 B2
20010005592 Bhatnagar et al. Jun 2001 A1
20010006634 Zaleske et al. Jul 2001 A1
20010010023 Schwartz et al. Jul 2001 A1
20010011131 Luyten et al. Aug 2001 A1
20010016646 Rueger et al. Aug 2001 A1
20010018619 Enzerink et al. Aug 2001 A1
20010020188 Sander Sep 2001 A1
20010021875 Enzerink et al. Sep 2001 A1
20010031254 Bianchi et al. Oct 2001 A1
20010039457 Boyer, II et al. Nov 2001 A1
20010039458 Boyer, II et al. Nov 2001 A1
20010041941 Boyer, II et al. Nov 2001 A1
20010043940 Boyce et al. Nov 2001 A1
20010051834 Frondoza et al. Dec 2001 A1
20020009805 Nevo et al. Jan 2002 A1
20020016592 Branch et al. Feb 2002 A1
20020035401 Boyce et al. Mar 2002 A1
20020042373 Carney et al. Apr 2002 A1
20020045940 Giannetti et al. Apr 2002 A1
20020055783 Tallarida et al. May 2002 A1
20020072806 Buskirk et al. Jun 2002 A1
20020082704 Cerundolo Jun 2002 A1
20020099448 Hiles et al. Jul 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020111695 Kandel Aug 2002 A1
20020120274 Overaker et al. Aug 2002 A1
20020138143 Grooms et al. Sep 2002 A1
20020177224 Madry et al. Nov 2002 A1
20020192263 Merboth et al. Dec 2002 A1
20030021827 Malaviya et al. Jan 2003 A1
20030023316 Brown et al. Jan 2003 A1
20030032961 Pelo et al. Feb 2003 A1
20030033021 Plouhar et al. Feb 2003 A1
20030033022 Plouhar et al. Feb 2003 A1
20030036797 Malaviya et al. Feb 2003 A1
20030036801 Schwartz et al. Feb 2003 A1
20030039695 Geistlich et al. Feb 2003 A1
20030040113 Muzuno et al. Feb 2003 A1
20030044444 Malaviya et al. Mar 2003 A1
20030049299 Malaviya et al. Mar 2003 A1
20030050709 Noth et al. Mar 2003 A1
20030055502 Lang et al. Mar 2003 A1
20030077821 Sah et al. Apr 2003 A1
20030078617 Schwartz et al. Apr 2003 A1
20030099620 Zaleske et al. May 2003 A1
20030100947 Nadler May 2003 A1
20030139591 Luyten et al. Jul 2003 A1
20030144743 Edwards et al. Jul 2003 A1
20030229400 Masuda et al. Dec 2003 A1
20030236573 Evans et al. Dec 2003 A1
20040024457 Boyce et al. Feb 2004 A1
20040028717 Sittinger et al. Feb 2004 A1
20040033212 Thomson et al. Feb 2004 A1
20040039447 Simon et al. Feb 2004 A1
20040044408 Hungerford et al. Mar 2004 A1
20040062753 Rezania et al. Apr 2004 A1
20040078090 Binette et al. Apr 2004 A1
20040102850 Shepard May 2004 A1
20040107003 Boyer, II et al. Jun 2004 A1
20040115172 Bianchi et al. Jun 2004 A1
20040127987 Evans et al. Jul 2004 A1
20040134502 Mizuno et al. Jul 2004 A1
20040138748 Boyer, II et al. Jul 2004 A1
20040143344 Malaviya et al. Jul 2004 A1
20040151705 Mizuno et al. Aug 2004 A1
20040166169 Malaviya et al. Aug 2004 A1
20040170610 Slavin et al. Sep 2004 A1
20040175826 Maor Sep 2004 A1
20040192605 Zhang et al. Sep 2004 A1
20040193268 Hazebrouck Sep 2004 A1
20040197311 Brekke et al. Oct 2004 A1
20040197373 Gertzman et al. Oct 2004 A1
20040219182 Gomes et al. Nov 2004 A1
20040220574 Pelo et al. Nov 2004 A1
20040230303 Gomes et al. Nov 2004 A1
20040241203 Shakesheff et al. Dec 2004 A1
20040243242 Sybert et al. Dec 2004 A1
20050004672 Pafford et al. Jan 2005 A1
20050020500 Shen et al. Jan 2005 A1
20050027307 Schwartz et al. Feb 2005 A1
20050043814 Kusanagi et al. Feb 2005 A1
20050064042 Vunjak-Novakovic et al. Mar 2005 A1
20050065613 Gross et al. Mar 2005 A1
20050074476 Gendler et al. Apr 2005 A1
20050074481 Brekke et al. Apr 2005 A1
20050089544 Khouri et al. Apr 2005 A1
20050101957 Buskirk et al. May 2005 A1
20050112761 Halvorsen et al. May 2005 A1
20050125077 Harmon et al. Jun 2005 A1
20050129668 Giannetti et al. Jun 2005 A1
20050152882 Kizer et al. Jul 2005 A1
20050159820 Yoshikawa et al. Jul 2005 A1
20050159822 Griffey et al. Jul 2005 A1
20050196460 Malinin Sep 2005 A1
20050209705 Niederauer et al. Sep 2005 A1
20050222687 Vunjak-Novakovic et al. Oct 2005 A1
20050228498 Andres Oct 2005 A1
20050240281 Slivka et al. Oct 2005 A1
20050251268 Truncale Nov 2005 A1
20050260612 Padmini et al. Nov 2005 A1
20050261681 Branch et al. Nov 2005 A9
20050261767 Anderson et al. Nov 2005 A1
20050288796 Awad et al. Dec 2005 A1
20060030948 Manrique et al. Feb 2006 A1
20060060209 Shepard Mar 2006 A1
20060099234 Winkler May 2006 A1
20060111778 Michalow May 2006 A1
20060167483 Asculai et al. Jul 2006 A1
20060178748 Dinger, III et al. Aug 2006 A1
20060200166 Hanson et al. Sep 2006 A1
20060210643 Truncale et al. Sep 2006 A1
20060216323 Knaack et al. Sep 2006 A1
20060216822 Mizuno et al. Sep 2006 A1
20060235534 Gertzman et al. Oct 2006 A1
20060247790 McKay Nov 2006 A1
20060247791 McKay et al. Nov 2006 A1
20060251631 Adkisson, IV et al. Nov 2006 A1
20060276907 Boyer, II et al. Dec 2006 A1
20060293757 McKay et al. Dec 2006 A1
20070009610 Syring Jan 2007 A1
20070010824 Malandain et al. Jan 2007 A1
20070014867 Kusanagi et al. Jan 2007 A1
20070026030 Gill et al. Feb 2007 A1
20070036834 Pauletti et al. Feb 2007 A1
20070041950 Leatherbury et al. Feb 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070065943 Smith et al. Mar 2007 A1
20070067032 Felt et al. Mar 2007 A1
20070083266 Lang Apr 2007 A1
20070093896 Malinin Apr 2007 A1
20070093912 Borden Apr 2007 A1
20070098759 Malinin May 2007 A1
20070100450 Hodorek May 2007 A1
20070113951 Huang May 2007 A1
20070128155 Sevedin Jun 2007 A1
20070134291 Ting Jun 2007 A1
20070135917 Malinin Jun 2007 A1
20070135918 Malinin Jun 2007 A1
20070135928 Malinin Jun 2007 A1
20070148242 Vilei et al. Jun 2007 A1
20070162121 Tarrant et al. Jul 2007 A1
20070168030 Edwards et al. Jul 2007 A1
20070172506 Nycz et al. Jul 2007 A1
20070178132 Giannetti et al. Aug 2007 A1
20070179607 Hodorek et al. Aug 2007 A1
20070185585 Bracy et al. Aug 2007 A1
20070276506 Troxel Nov 2007 A1
20070299517 Davisson et al. Dec 2007 A1
20070299519 Schmieding Dec 2007 A1
20080015709 Evans et al. Jan 2008 A1
20080027546 Semler et al. Jan 2008 A1
20080031915 Becerra Ratia et al. Feb 2008 A1
20080038314 Hunziker Feb 2008 A1
20080039939 Iwamoto et al. Feb 2008 A1
20080039954 Long et al. Feb 2008 A1
20080039955 Hunziker Feb 2008 A1
20080051889 Hodorek Feb 2008 A1
20080058953 Scarborough Mar 2008 A1
20080065210 McKay Mar 2008 A1
20080077251 Chen et al. Mar 2008 A1
20080086142 Kohm et al. Apr 2008 A1
20080119947 Huckle et al. May 2008 A1
20080125863 McKay May 2008 A1
20080125868 Branemark et al. May 2008 A1
20080133008 Truncale et al. Jun 2008 A1
20080138414 Huckle et al. Jun 2008 A1
20080153157 Yao et al. Jun 2008 A1
20080154372 Peckham Jun 2008 A1
20080167716 Schwartz et al. Jul 2008 A1
20080183300 Seedhom et al. Jul 2008 A1
20080220044 Semler et al. Sep 2008 A1
20080249632 Stone et al. Oct 2008 A1
20080255676 Semler et al. Oct 2008 A1
20080274157 Vunjak-Novakovic et al. Nov 2008 A1
20080294270 Yao et al. Nov 2008 A1
20080305145 Shelby et al. Dec 2008 A1
20090012629 Yao et al. Jan 2009 A1
20090024223 Chen et al. Jan 2009 A1
20090024224 Chen et al. Jan 2009 A1
20090036838 Quelle et al. Feb 2009 A1
20090043389 Vunjak-Novakovic et al. Feb 2009 A1
20090062870 Milano et al. Mar 2009 A1
20090069901 Truncale et al. Mar 2009 A1
20090069904 Picha Mar 2009 A1
20090076624 Rahaman et al. Mar 2009 A1
20090081276 Alsberg et al. Mar 2009 A1
20090099661 Bhattacharya et al. Apr 2009 A1
20090117652 Luyten et al. May 2009 A1
20090131986 Lee et al. May 2009 A1
20090149893 Semler et al. Jun 2009 A1
20090210057 Liao et al. Aug 2009 A1
20090226523 Behnam et al. Sep 2009 A1
20090248592 Schmieding Oct 2009 A1
20090253810 Katz Oct 2009 A1
20090280179 Neumann et al. Nov 2009 A1
20090291112 Truncale et al. Nov 2009 A1
20090299475 Yamamoto et al. Dec 2009 A1
20090312805 Lang et al. Dec 2009 A1
20090312842 Bursac et al. Dec 2009 A1
20090319045 Truncale et al. Dec 2009 A1
20090319051 Nycz et al. Dec 2009 A9
20090324722 Elisseeff Dec 2009 A1
20100015202 Semler et al. Jan 2010 A1
20100021521 Xu et al. Jan 2010 A1
20100036492 Hung et al. Feb 2010 A1
20100036503 Chen et al. Feb 2010 A1
20100241228 Syring et al. Sep 2010 A1
20100274362 Yayon et al. Oct 2010 A1
20100305907 Fitz Dec 2010 A1
20100322994 Kizer et al. Dec 2010 A1
20110052705 Malinin Mar 2011 A1
20110070271 Truncale et al. Mar 2011 A1
20110104242 Malinin May 2011 A1
20120009224 Kizer et al. Jan 2012 A1
20120009230 Drapeau et al. Jan 2012 A1
20120009270 Kizer et al. Jan 2012 A1
20120107384 Yao et al. May 2012 A1
20120156265 Binette Jun 2012 A1
20120283833 Brannon Nov 2012 A1
20130011442 Chan Jan 2013 A1
20130071486 McQuillan Mar 2013 A1
20130115255 Bosley, Jr. May 2013 A1
20130123939 Nauman May 2013 A1
20130158658 Hayzlett Jun 2013 A1
20130158676 Hayzlett Jun 2013 A1
20130197530 McKay Aug 2013 A1
20130273121 Mizuno Oct 2013 A1
20130287741 Stilwell Oct 2013 A1
20130287753 Centeno Oct 2013 A1
20130330391 Malinin Dec 2013 A1
20130330415 Yao et al. Dec 2013 A1
20130331898 Nyemscek Dec 2013 A1
20140031795 McKay Jan 2014 A1
20140065238 Wolfinbarger, Jr. Mar 2014 A1
Foreign Referenced Citations (109)
Number Date Country
0517030 Dec 1992 EP
0522569 Jan 1993 EP
0762903 Dec 1995 EP
0517030 Sep 1996 EP
0739631 Oct 1996 EP
0784985 Jul 1997 EP
0968012 Sep 1998 EP
1099443 May 2001 EP
1237511 Jun 2001 EP
1127581 Aug 2001 EP
1181908 Feb 2002 EP
1234552 Aug 2002 EP
1234555 Aug 2002 EP
0762903 Sep 2003 EP
0739631 Dec 2003 EP
1181908 Dec 2003 EP
1384452 Jan 2004 EP
1234555 Jun 2004 EP
1237511 Sep 2004 EP
1618178 Nov 2004 EP
1127581 Jun 2005 EP
1561481 Aug 2005 EP
1234552 Aug 2006 EP
0968012 Sep 2006 EP
1719463 Nov 2006 EP
1719531 Nov 2006 EP
1719532 Nov 2006 EP
1234555 Feb 2007 EP
0762903 Aug 2007 EP
1740121 Oct 2007 EP
1537883 Apr 2008 EP
1618178 Jul 2008 EP
1416860 Mar 2011 EP
2102811 Feb 1983 GB
1454423 Jan 1989 SU
8404880 Dec 1984 WO
9316739 Sep 1993 WO
9403584 Feb 1994 WO
9525748 Sep 1995 WO
9533502 Dec 1995 WO
9624310 Aug 1996 WO
9737613 Oct 1997 WO
9814222 Apr 1998 WO
9834569 Aug 1998 WO
9841246 Sep 1998 WO
9843686 Oct 1998 WO
9001342 Feb 1999 WO
9908728 Feb 1999 WO
9909914 Mar 1999 WO
9911298 Mar 1999 WO
9915209 Apr 1999 WO
9921497 May 1999 WO
9922747 May 1999 WO
9948541 Sep 1999 WO
9952572 Oct 1999 WO
9956797 Nov 1999 WO
0040177 Jul 2000 WO
0047114 Aug 2000 WO
0072782 Dec 2000 WO
0107595 Feb 2001 WO
0138357 May 2001 WO
0139788 Jun 2001 WO
0143667 Jun 2001 WO
0146416 Jun 2001 WO
0218546 Mar 2002 WO
0222779 Mar 2002 WO
0236732 May 2002 WO
02058484 Aug 2002 WO
02064180 Aug 2002 WO
0277199 Oct 2002 WO
0295019 Nov 2002 WO
03007805 Jan 2003 WO
03007873 Jan 2003 WO
03007879 Jan 2003 WO
03012053 Feb 2003 WO
03007879 Aug 2003 WO
03079985 Oct 2003 WO
03087160 Oct 2003 WO
03094835 Nov 2003 WO
03007805 Feb 2004 WO
2004067704 Aug 2004 WO
2004069298 Aug 2004 WO
2004075940 Sep 2004 WO
2004096983 Nov 2004 WO
2004103224 Dec 2004 WO
2005058207 Jun 2005 WO
2005110278 Nov 2005 WO
2004096983 Dec 2005 WO
2006036681 Apr 2006 WO
2006042311 Apr 2006 WO
2006050213 May 2006 WO
2005110278 Aug 2006 WO
02036732 Sep 2006 WO
2006113586 Oct 2006 WO
2006042311 Nov 2006 WO
03094835 Mar 2007 WO
2007024238 Mar 2007 WO
2006113586 Jul 2007 WO
2008013763 Jan 2008 WO
2008021127 Feb 2008 WO
2008013763 Apr 2008 WO
2008038287 Apr 2008 WO
2008081463 Jul 2008 WO
2008106254 Sep 2008 WO
2008038287 Apr 2009 WO
2009076164 Jun 2009 WO
2009111069 Sep 2009 WO
2009155232 Dec 2009 WO
2010083051 Jul 2010 WO
Non-Patent Literature Citations (227)
Entry
U.S. Appl. No. 13/025,722, filed Feb. 11, 2011.
U.S. Appl. No. 12/966,674, filed Dec. 13, 2010.
U.S. Appl. No. 12/931,427, filed Feb. 1, 2011.
Non-final Office Action with regard to U.S. Appl. No. 12/381,072, mailed Jan. 20, 2011.
Non-final Office Action with regard U.S. Appl. No. 12/924,132, mailed Mar. 1, 2011.
Guilak, Farshid; “Functional Tissue Engineering: The Role of Biomechanics in Articular Cartilage Repair”, Clinical Orthopaedics and Related Research, No. 391 S, pp. S295-S305, (c) 2001 Lipponcott Williams & Wilkins, Inc., (11 pages).
Spangenberg, Kimberly, M. et al. “Histomorphometric Analysis of a Cell-Based Model of Cartilage Repair”, Tissue Engineering, vol. 8, No. 5, 2002, (8 pages).
Non-Final Office Action mailed Apr. 15, 2010 in connection with U.S. Appl. No. 11/657,042.
International Preliminary Report on Patentability for PCT/US2009/001459, mailed on May 12, 2010.
Final Office Action mailed Mar. 22, 2010 in connection with U.S. Appl. No. 12/010,984.
Search Report and Written Opinion for International Patent Application No. PCT/US2004/010957, issued on Nov. 1, 2004.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2004/010957, issued on Nov. 18, 2005.
Search Report and Written Opinion for International Patent Application No. PCT/US2005/030610, issued on Apr. 7, 2006.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2005/030610, issued on Feb. 26, 2008.
Search Report and Written Opinion for International Patent Application No. PCT/US2005/036878, issued on Sep. 21, 2006.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2005/036878, issued on Apr. 17, 2007.
Search Report and Written Opinion for International Patent Application No. PCT/US2005/008798, issued on Jun. 19, 2006.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2005/008798, issued on Nov. 1, 2006.
Search Report and Written Opinion for International Patent Application No. PCT/US2004/010956, issued on Oct. 28, 2005.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2004/010956, issued on Nov. 18, 2005.
Search Report and Written Opinion for International Patent Application No. PCT/US2005/051796, issued on Jun. 23, 2009.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2008/051796, issued on Jul. 28, 2009.
Search Report and Written Opinion for International Patent Application No. PCT/US2008/085522, issued on Jul. 6, 2009.
Search Report and Written Opinion for International Patent Application No. PCT/US2009/001459, issued on Jul. 6, 2009.
Non-Final Office Action mailed Apr. 15, 2010 in connection with U.S. Appl. No. 12/079,629.
Non-Final Office Action mailed Apr. 12, 2010 in connection with U.S. Appl. No. 12/191,490.
Non-Final Office Action mailed Apr. 26, 2010 in connection with U.S. Appl. No. 12/147,042.
Matsuda et al. (1995) In Vivo Chondrogenesis in Collagen Sponge Sandwiched by Perichondrium. J. Biomater. Sci. Polymer Ed., vol. 7, No. 3, pp. 221-229.
Fujisato et al. (1996) Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold. Biomaterials, vol. 17, No. 2, pp. 155-162.
Non-final Office Action for U.S. Appl. No. 12/043,001, mailed May 11, 2011.
Supplemental Search Report for European Patent Application No. 05728956.3, dated May 2, 2011.
Non-final Office Action for U.S. Appl. No. 12/179,034, mailed Jun. 29, 2011.
Final Office Action for U.S. Appl. No. 12/381,072, mailed Jun. 27, 2011.
Non-final Office Action for U.S. Appl. No. 12/966,674, mailed Jul. 12, 2011.
Non-final Office Action for U.S. Appl. No. 12/924,132, mailed Jul. 18, 2011.
Cheng, et al., “Chondrogenic Deffentiation of Adipose-Derived Adult Stem Cells by a Porous Scaffold Derived from Native Articular Carilage Extracellular Matrix”, Tissue Engineering: Part A, vol. 15, No. 2, (2009), pp. 231-241.
Lin et al., “The Chondrocyte: Biology and Clinical Application”, Tissue Engineering, vol. 12, No. 7, (2006), pp. 1971-1984.
Umlauf et al., “Cartilage biology, pathology, and repair”, Cell Mol. Life Sci. Vol. 67, (2010), pp. 4197-4211.
Communication pursuant to Article 94(3) EPC for European Patent Application No. 08 782.3. dated Aug. 9, 2011.
International Perliminary Report on Patentability for International Patent Application No. PCT/US2010/000108, mailed Jul. 28, 2011.
First Action Interview Pilot Program Pre-Interview Communication for U.S. Appl. No. 12/931,427, mailed Aug. 19, 2011.
Aston et al., “Repair of Articular Surfaces by Allografts of Articular and Growth-Plate Cartilage,” Journal of Bone and Joint Surgery, Jan. 1986, vol. 68-B, No. 1; pp. 29-35.
Hoffman, “Hydrogels for Biomedical Applications”, Advanced Drug Delivery Reviews, 2002, vol. 43, pp. 3-12.
Dahlberg et al., “Demineralized Allogeneic Bone Matrix for Cartilage Repair”, Journal of Orthopaedic Research, 1991, vol. 9, pp. 11-19.
Lu et al., “Minced Cartilage without Cell Culture Serves as an Effective Intraoperative Cell Source for Cartilage Repair”, Journal of Orthopaedic Research, Jun. 2006, vol. 24, pp. 1261-1270.
Stone et al., “Articular Cartilage Paste Grafting to Full-Thickness Articular Cartilage Knee Joint Lesions: A 2-to 12-Year Follow-up”, Arthroscopy: The Journal of Arthoscopic and Related Surgery, Mar. 2006, vol. 22, No. 3, pp. 291-299.
Newman, “Articular Cartilage Repair”, American Journal of Sports Medicine, 1998, vol. 26, No. 2, pp. 309-324.
Brittberg et al., “Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation”, New England Journal of Medicine, Oct. 6, 1994, vol. 331, No. 14, pp. 889-895.
Nixon et al., “Enhanced Repair of Extensive Articular Defects by Insulin-like Growth Factor-I-Laden Fibrin Composites”, Journal of Orthopaedic Research, 1999; 17:475-487.
International Cartilage Repair Society, “Cartilage Injury Evaluation Package”, www.cartilage.org, 2000.
Richardson et al., “Repair of Human Articular Cartilage After Implantation of Autologous Chondrocytes”, Journal of Bone and Joint Surgery [Br], 1999; 81-B:1064-1068.
Brittberg et al., “Autologous Chondrocytes Used for Articular Cartilage Repair: An Update”, Clinical Orthopaedics and Related Research, 2001; No. 391 Suppl: S337-S348.
Peterson et al., “Two-to 9-year Outcome After Autologous Chondrocyte Transplantation of the Knee”, Clinical Orthopaedics and Related Research, 2000; No. 374: 212-234.
Peterson et al., “Autologous Chondrocyte Transplantation: Biomechanics and Long-term Durability”, American Journal of Sports Medicine, 2002, vol. 30, No. 1, pp. 2-12.
Messner et al., “Cartilage Repair: A Critical Review”, Acta Orthopaedica Scandinavica, 1996, vol. 67, No. 5, pp. 523-529.
Messner et al., “The Long-term Prognosis for Severe Damage to Weight-bearing Cartilage in the Knee: A 14-year Clinical and Radiographic Follow-up in 28 Young Athletes”, Acta Orthopaedica Scandinavica, 1996, vol. 67, No. 2, pp. 165-168.
Buckwalter et al., “Articular Cartilage: Degeneration and Osteoarthritis, Repair, Regeneration, and Transplantation”, AAOS Instructional Course Lectures, 1998; 47:487-504.
Breinan et al., “Effect of Cultured Autologous Chondrocytes on Repair of Chondral Defects in a Canine Model”, Journal of Bone and Joint Surgery [Am], Oct. 1997; vol. 79-A, No. 10, 1439-1451.
Breinan et al., “Autologous Chondrocyte Implantation in a Canine Model: Change in Composition of Reparative Tissue with Time”, Journal of Orthopaedic Research, 2001; 19:482-492.
Brittberg et al., “Rabbit Articular Cartilage Defects Treated with Autologous Cultured Chondrocytes”, Clinical Orthopaedics and Related Research, 1996; 326:270-283.
Nehrer et al., “Chondrocyte-seeded Collagen Matrices Implanted in a Chondral Defect in a Canine Model”, Biomaterials, 1998; 19:2313-2328.
Vunjak-Novakovic et al., “Bioreactor Cultivation Conditions Modulate the Composition and Mechanical Properties of Tissue-Engineered Cartilage”, Journal of Orthopaedic Research, 1999; 17:130-138.
Bursac, “Collagen Network Contributions to Structure-Function Relationships in Cartilaginous Tissues in Compression” (Dissertation), Boston University College of Engineering, 2002.
Gooch et al., “IGF-I and Mechanical Environment Interact to Modulate Engineered Cartilage Development”, Biochemical and Biophysical Research Communications, 2001; 286:909-915.
Pei et al., “Growth Factors for Sequential Cellular De-and Re-differentiation in Tissue Engineering”, Biochemical and Biophysical Research Communications, 2002; 294:149-154.
Obradovic et al., “Integration of Engineered Cartilage”, Journal of Orthopaedic Research, 19:1089-1097, 2001.
Schaefer et al., “Tissue Engineered Composites for the Repair of Large Osteochondral Defects”, Arthritis & Rheumatism, 46(9): 2524-2534 (2002).
Pei et al., “Bioreactors Mediate the Effectiveness of Tissue Engineering Scaffolds”, The FASEB Journal, 16:1691-1694, published online (Aug. 7, 2002), 10.1096/fj.02-0083fje.
Madry et al., “Gene Transfer of a Human Insulin-like Growth Factor I cDNA Enhances Tissue Engineering of Cartilage”, Human Gene Therapy, 13: 1621-1630 (Sep. 1, 2002).
Pearson et al. (eds.), American Association of Tissue Banks, Standards for Tissue Banking, 2008 (12th ed.), pp. 53-56, 86-88.
Ornitz et al., “Protein Family Review: Fibroblast Growth Factors”, Genome Biology (2001) 2(3): reviews 3005. 1-3005.12, available at http://genomebiology.com/2001/2/3/reviews/3005.1.
Loeser et al., “Basic Fibroblast Growth Factor Inhibits the Anabolic Activity of Insulin-like Growth Factor 1 and Osteogenic Protein 1 in Adult Human Articular Chondrocytes”, Arthritis & Rheumatism, vol. 52, No. 12 (Dec. 2005), pp. 3910-3917.
Kato et al., “Fibroblast Growth Factor is an Inhibitor of Chondrocyte Terminal Differentiation”, Journal of Biological Chemistry, vol. 265, No. 10 (Apr. 5, 1990) pp. 5903-5909.
Andrés et al., “A Pro-Inflammatory Signature Mediates FGF2-induced Angiogenesis”, Journal of Cellular and Molecular Medicine, (Jun. 28, 2008), available at http://www.ncbi.nlm.nih.gov/pubmed/18624773.
Burger et al., “Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells”, Blood, vol. 100, No. 10 (Nov. 15, 2002) 3527-35.
Baird, “Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors”, Current Opinions in Neurobiology, (1994) 4:78-86.
Mazué et al., “Preclinical and Clinical Studies with Recombinant Human Basic Fibroblast Growth Factor”, Annals New York Academy of Sciences, (1991) 329-340.
Aviles et al., “Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF-2)”, British Journal of Pharmacology (2003) 140: 637-646.
Nolan et al., “Living Bone Grafts”, BMJ, vol. 304, Jun. 13, 1992, pp. 1520 and 1521.
Stone et al., “One-Step American Technique of Articular Cartilage Paste Grafting to Traumatic and Arthritic Defects in the Knee Joint (2-7 Years Follow-Up)”, downloaded from http:web.archive.org/web/20041205005845/http://www.stoneclinic.com/onestep.thm; published Dec. 5, 2004.
Feczko et al., “Experimental Results of Donor Site Filling for Autologous Osteochondral Mosaicplasty”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 19, No. 7 (Sep. 2003), pp. 755-761.
Nettles et al., “In Situ Crosslinkable Hyaluronan For Articular Cartilage Repair”, 50th Annual Meeting of the Orthopaedic Research Society, Paper No. 0202 (Mar. 2004).
Nettles et al., “Photocrosslinkable Hyaluronan as a Scaffold for Articular Cartilage Repair”, Annals of Biomedical Engineering, vol. 32, No. 3, Mar. 2004, pp. 391-397.
Peretti et al., “Cell-Based Bonding of Articular Cartilage: An Extended Study”, Journal of Biomedical Materials Research, 64A, 2003, pp. 517-524.
Bugbee, “Fresh Osteochondral Allografting”, Operative Techniques in Sports Medicine, Apr. 2000, vol. 8, No. 2, pp. 158-162.
Verbruggen et al., “Repair Function in Organ Cultured Human Cartilage. Replacement of Enzymatically Removed Proteoglycans During Longterm Organ Culture”, The Journal of Rheumatology, 12:4, (1985), pp. 665-674.
Peretti et al., “Cell-based Tissue-Engineered Allogeneic Implant for Cartilage Repair” Tissue Engineering, 2000, vol. 6. No. 5, pp. 567-576.
Jackson et al., “Cartilage Substitute: Overview of Basic Science & Treatment Options”, Journal of American Academy of Orthopaedic Surgeons, vol. 9, Jan./Feb. 2001, pp. 37-52.
Glowacki, Julie, “Engineered Cartilage, Bone, Joints and Menisci-Potential for Temporomandibular Joint Reconstruction”, Cells Tissues Organs, vol. 169, Issue 3, 2001, pp. 302-308.
Peretti et al., “A Biomedical Analysis of an Engineered Cell-Scaffold Implant for Cartilage Repair”, Annals of Plastic Surgery, 2001, vol. 46, No. 5, pp. 533-537.
Peretti et al., “Biomechanical Analysis of a Chondrocyte-Based Repair Model of Articular Cartilage”, Tissue Engineering, Aug. 1, 1999, vol. 5. No. 4, pp. 317-326.
Peretti et al., “In Vitro Bonding of Pre-seeded Chondrocyte”, Sport Sciences for Health, May 1, 2007, vol. 2, No. 1, pp. 29-33.
Peretti et al., “Bonding of Cartilage Matrices with Cultured Chondrocytes: An Experiential Model”, Journal of Orthopedic Research, Jan. 1998, vol. 16, No. 1, pp. 89-95.
Hunziker, “Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects”, Osteoarthritis and Cartilage 2001, vol. 10, No. 6, pp. 432-463.
Chen et al., “Repair of Articular Cartilage Defects: Part I. Basic Science of Cartilage Healing”, The American Journal of Orthopedics, Jan. 1999, pp. 31-33.
Chen et al., “Repair of Articular Cartilage Defects: Part II. Treatment Options”, The American Journal of Orthopedics, Feb. 1999, pp. 88-96.
Buckwalter, “Articular Cartilage Injuries”, Clinical Orthopaedics and Related Research, 2002, No. 402, pp. 21-37.
Nixon et al., “New Horizons in Articular Cartilage Repair”, Proceedings of the Annual Convention of the AAEP, 2001, vol. 47, pp. 217-226.
Tsumaki et al. “Role of CDMP-1 in Skeletal Morphogenesis: Promotion of Mesenchymal Cell Recruitment and Chondrocyte Differentiation”, J. Cell Biol., Jan. 1999, vol. 144, No. 1, 161-173.
Trzeciak et al., “Evaluation of Cartilage Reconstruction by Means of Autologous Chondrocyte Versus Periosteal Graft Transplantation: An Animal Study”, Transplantation Proceedings, vol. 38 (2006), pp. 305-311.
Brighton et al., “Articular Cartilage Preservation and Storage-I. Application of Tissue Culture Techniques to the Storage of Viable Articular Cartilage”, Arthritis and Rheumatism, vol. 22, No. 10 (Oct. 1979), pp. 1093-1101.
Mahadev et al., “Autogenous Osteochondral Morselised Grafts for Full Thickness Osteochondral Defects in the Knee Joints of Pigs”, Singapore Medical Journal, 2001, vol. 42(9), pp. 410-416.
Hunziker, “Articular Cartilage Structure in Humans and Experimental Animals”, Articular Cartilage and Osteoarthritis, Raven Press, ed., 2001, pp. 183-199.
Girotto et al., “Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds”, Biomaterials, vol. 24 (2003), pp. 3265-3275.
Gertzman et al., “A pilot study evaluating sodium hyaluronate as a carrier for freeze-dried demineralized bone powder”, Cell and Tissue Banking, vol. 2, 2001, pp. 87-94.
Diduch et al., “Joint Repair: Treatment Options for Articular Cartilage Injury” Orthopedic Technology Review (2002) 4:24-27.
Gilbert, et al., “Decellularization of Tissues and Organs”, Biomaterials (2006) 27:3675-3683.
OsteoSponge product information, Bacterin International Inc., May 2005.
http://www.stoneclinic.com/articularcartilagepastegrafting (Copyright 2009).
http://www.technobusiness-solutions.com/article-lyophilization1.html (published Feb. 12, 2002).
Crescenzi et al., “Hyaluron Linear and Crosslinked Derivatives as Potential/Actual Biomaterials”, in Hyaluronan (2002), vol. 1 (Chemical, Biochemical and Biological Aspects), J. F. Kennedy et al., Ed., pp. 261-268.
Michielen et al., “Novel Biomaterials Based on Cross-linked Hyaluronon: Structural Investigations”, in Hyaluronan (2002), vol. 1 (Chemical, Biochemical and Biological Aspects), J. F. Kennedy et al., Ed., pp. 269-276.
U.S. Appl. No. 12/147,042, based on U.S. Patent No. 7,067,123, filed Jun. 26, 2008, entitled: “Novel Glue for Cartilage Repair”.
Non-final Office Action mailed Aug. 19, 2009 in connection with U.S. Appl. No. 12/147,042.
Non-final Office Action mailed Apr. 19, 2007 in connection with U.S. Appl. No. 11/151,270.
Final Office Action mailed Oct. 9, 2007 in connection with U.S. Appl. No. 11/151,270.
Advisory Action mailed Dec. 27, 2007 in connection with U.S. Appl. No. 11/151,270.
Non-final Office Action mailed Jul. 9, 2008 in connection with U.S. Appl. No. 11/151,270.
Non-final Office Action mailed Nov. 5, 2004 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed May 3, 2005 in connection with U.S. Appl. No. 10/438,883.
Final Office Action mailed Oct. 18, 2005 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed Feb. 6, 2007 in connection with U.S. Appl. No. 10/438,883.
Communication mailed Oct. 9, 2007 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed Nov. 12, 2008 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed Feb. 7, 2008 in connection with U.S. Appl. No. 10/815,778.
Final Office Action mailed Nov. 13, 2008 in connection with U.S. Appl. No. 10/815,778.
Non-final Office Action mailed Jul. 2, 2009 in connection with U.S. Appl. No. 10/815,778.
Final Office Action mailed Mar. 15, 2010 in connection with U.S. Appl. No. 10/815,778.
Non-final Office Action mailed Feb. 20, 2007 in connection with U.S. Appl. No. 10/960,960.
Final Office Action mailed Sep. 28, 2007 in connection with U.S. Appl. No. 10/960,960.
Non-final Office Action mailed May 18, 2009 in connection with U.S. Appl. No. 11/657,042.
Final Office Action mailed Dec. 28, 2009 in connection with U.S. Appl. No. 11/657,042.
Non-final Office Action mailed Jan. 14, 2010 in connection with U.S. Appl. No. 11/081,103.
Non-final Office Action mailed Jul. 22, 2009 in connection with U.S. Appl. No. 12/010,984.
Non-final Office Action mailed Oct. 5, 2005 in connection with U.S. Appl. No. 10/424,765.
Non-final Office Action mailed Dec. 18, 2007 in connection with U.S. Appl. No. 11/081,103.
Final Office Action mailed Sep. 19, 2008 in connection with U.S. Appl. No. 11/081,103.
Non-final Office Action mailed Jun. 3, 2009 in connection with U.S. Appl. No. 11/081,103.
Abraham, Judith A. et al., (1986) Human Basic Fibroblast Growth Factor: Nucleotide Sequence and Genomic Organization. EMBO Journal 5(10):2523-2528.
Agrawal, Sudhir et al., (1991) Pharmacokinetics. Biodistribution, And Stability of Oligodeoxynucleotide Phosphorothioates In Mice. Proc Natl Acad Sci. USA 88(17):7595-7599.
Arakawa, Tsutomu et al., (1993) Production and Characterization of an Analog of Acidic Fibroblast Growth Factor With Enhanced Stability and Biological Activity. Protein Engineering 6(5):541-546.
Bailly, Karine et al., (2000) Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor. FASEB Journal 14(2):333-343.
Bange, Johannes et al., (2002) Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Research 62(3):840-846.
Bork, Peer (2000) Powers and pitfalls in sequence analysis: The 70% hurdle. Genome Res. 10(4):398-400.
Bork, Peer and Bairoch, Amnon (1996) Go hunting in sequence databases but watch out for the traps. Trends in Genetics 12(10):425-427.
Brenner, Steven E. (1999) Errors in genome annotation. Trends in Genetics 15(4):132-133.
Cappellen, David et al., (1999) Frequent activating mutations of FGFR3 In human bladder arid cervix carcinomas. Nature Genetics 23(1):18-20.
Chusho, Hideki et al., (2001) Dwarfism and early death in mice lacking C-type Natriuretic Peptide. Proc Natl Acad Sci. 98(7):4016-4021.
Coughlin, Shaun R. et al., (1988) Acidic and basic fibroblast growth factors stimulate tyrosine kinase activity in vivo. J Biol Chem. 263(2):988-993.
Dell'Accio, Francesco et al., (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo, Arthritis Rheum. 44(7):1608-19.
Doerks, Tobias et al., (1998) Protein annotation: detective work for function prediction. Trends Genet. 14(6):248-250.
Dvorakova, Dana et al., (2001) Changes in the expression of FGFR3 in patients with chronic myeloid leukaemia receiving transplants of allogeneic peripheral blood stem cells British Journal Haematology 13(3):832-835.
Eriksson, A. Elisabeth et al., (1991) Three-dimensional structure of human basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88:3441-3445 (XP002936511).
Ezzat Shereen et al., (2002) Targeted expression of A Human pituitary tumor-derived isoform of FGF Receptor-4 Recapitulates Pituitary Tumorigenesis. Journal of Clinical Investigation 109(1):69-77.
Faham, Salem et al., (1998) Diversity does make a difference: fibroblast growth factor-Heparin interactions. Curr Opin Struct Biol 8(5):578-586.
Fingl, Edward and Woodbury, Dixon M. (1975) General Principles. In: The Pharmacological Basis of Therapeutics. Fifth edition. Goodman, Louis S. and Gilman, Alfred editors. 1:1-45.
Gargiulo, B. J. et al., (2002) Phenotypic modulation of human articular chondrocytes by bistratene A. Eur Cell Mater. 3:9-18.
Givol, David and Yayon, Avner (1992) Complexity of FGF receptors: genetic basis for structural diversity and functional specificity FASEB J. 6(15):3362-3369.
Hecht, H. J. et al., (2000) Structure of fibroblast growth factor 9 shows a symmetric dimmer with unique receptor-and heparin-binding interfaces. Acta Cryst. D57:378-384.
Johnson, Daniel E. and Williams, Lewis T. (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 60:1-41.
Kirikoshi, Hiroyuki et al., (2000) Molecular cloning and characterization of Human FGF-20 on chromosome 8p21.3-p22. Biochem Biophys Res Commun. 274(2):337-343.
Kuroda, S. et al., (1999) Anabolic effect of aminoterminally truncated Fibroblast Growth Factor 4 (FGF4) on bone. Bone 25(4):431-437.
Nakatake, Yuhki et al., (2001) Identification of a novel fibroblast growth factor. FGF-22, preferentially expressed in the inner root sheath of the hair follicle. Biochim Biophys Acta. 1517(3):460-463.
Ngo, J. Thomas et al., (1994) Computational complexity, protein structure prediction, and the Levithal Paradox. In: The Protein Folding Problem and Tertiary Structure Prediction. K. Merz Jr. and S. Le Grand, Editors. 433-506 see also table of contents.
Nishimura, Tetsuya et al., (2000) Identification Of a Novel FGF, FGF-21, Preferentially Expressed In The Liver. Biochim Biophys Acta 1492(1):203-206.
Okada-Ban, Mai et al., (2000) Fibroblast growth factor-2. International Journal of Biochemistry & Cell Biology 32 (3):263-267.
Olsen, Shaun K. (2003) Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem. 278(36):34226-342236.
Ornitz, David M. et al., (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem. 271(25)1 5292-7.
Ornitz, David M. (2000) FGFs, heparan sulfate and FGFRs: Complex interactions essential for development. Bio Essays 22:108-112.
Pellegrini, Luca et al., (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407(6807):1029-1034.
Pillai, Omathanu and Panchagnula, Ramesh (2001) Polymers in drug delivery. Curr Opin Chem Biol 5 (4):447-451.
Plotnikov, Alexander N. et al., (1999) Structural basis for FGF receptor dimerization and activation. Cell 98 (5):641-650.
Plotnikov, Alexander N. et al., (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101(4): 413-424.
Sahni, Malika et al., (1999) FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway Genes Deve1.13(11):1361-1366.
Schlessinger, Joseph et al., (2000) Crystal structure of a ternary FGF-FGFR-1 Heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6(3):743-750.
Schmal, H. et al., (2007) bFGF influences human articular chondrocyte differentiation. Cytotherapy 9(2):184-93.
Seno, Masaharu et al., (1990) Carboxyl-terminal structure of basic fibroblast growth factor significantly contributes to its affinity for Heparin. Eur J Biochem. 188:239-245.
Shao, Zhang-Qiang et al., (2006) Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ. J. 70(4):471-477.
Skolnik, Jeffrey and Fetrow, Jacquelyn S. (2000) From genes to protein structure and function: novel applications of computational approaches in the genomic era. Trends BioTechnol. 18(1):34-39.
Sleeman, Matthew et al., (2001) Identification of a new fibroblast growth factor receptor, FGFR5. Gene 271 (2):171-182.
Smith, Temple and Zhang, Xiaolin (1997) The challenges of genome sequence annotation or The devil is in the details. Nat Biotechnol. 15(12):1222-1223.
Springer, Barry A. et al., (1994) Identification and Concerted Function of Two Receptors Binding Surfaces on Basic Fibroblast Growth Factor Required for Mitogenesis. The Journal of Biological Chemistry 269(43):26879-26884.
Stauber, Deborah J. et al., (2000) Structural interactions of fibroblast growth factor receptor with its ligands. Proc Natl Acad Sci USA 97(1):49-54.
Vajo, Zoltan et al., (2000) The Molecular and Genetic Basis of Fibroblast Growth Factor Receptor 3 Disorders: The Achondroplasia Family of Skeletal Dysplasias, Muenke Craniosynostosis, and Crouzon Syndrome with Acanthosis Nigricans. Endocrine Rev. 21(1):23-39.
Wells, James A. (1990) Additivity of mutational effects in proteins. Biochemistry 29(37):8509-8517.
Yamashita, Tetsuo et al., (2000) Identification of a novel fibroblast growth factor, Fgf-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochemical and Biophysical Research Communications 277 (2):494-498.
Yayon, Avner et al., (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64(4):841-848.
Yee, Cindy J. et al., (2000) Analysis of fibroblast growth factor receptor 3 S249C mutation in cervical carcinoma. Journal of the National Cancer Institute 92(22):1848-1849.
Zhang, Jiandong et al., (1991) Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 Beta. Proc Natl Acad Sci. USA 88(8):3446-3450.
Zhu, Hengyi et al., (1995) Glu-96 of basic fibroblast growth factor is essential for high affinity receptor binding. Journal of Biological Chemistry 270(37):21869-21874.
Zhu, Hengyi et al., (1997) Analysis of high-affinity binding determinants in the receptor binding epitope of basic fibroblast growth factor. Protein Engineering 10(4):417-421.
Carr, M. E. Jr. and Alving, B. M. (1995) Effect of fibrin structure on plasmin-mediated dissolution of plasma clots. Blood Coag. Fibrinol. 6(6):567-573.
Carr, Marcus E. (1988) Fibrin formed in plasma is composed of fibers more massive than those formed from purified fibrinogen. Thromb. Haemost. 59(3):535-539.
Cook, James L. et al., (2003) Biocompatibility of three-dimensional chondrocyte grafts in large tibial defects of rabbits. Am J Vet Res. 64(1):12-20.
Gao, Jizong et al. (2002) Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge, Tissue Engin. 13(5):827-837.
Gruber, Reinhard et al., (2002) Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implants Res. 13(5):529-535.
Haisch, A. et al., (2000) Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med Biol Eng Comput. 38(6):686-689.
Itokazu, M. et al., (1997) The sustained release of antibiotic from freeze-dried fibrin-antibioticcompound and efficacies in a rat model of osteomyelitis. Infection 25(6):359-363.
Sims, C. Derek et al., (1998) Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plastic & Recon. Surg. 101(6):1580-1585.
“Young's Modulus.” Entry on http://en.wikipedia.org. accessed Oct. 27, 2005. 3 pages.
Bradford, Marion M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 72(1-2):248-254.
Atala et al. (1993) Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J. of Urology 150(2 Pt 2):745-7.
Temenoff et al., “Review: Tissue engineering for regeneration of articular cartilage”, Biomaterials 21 (2000) pp. 431-440.
Hunziker, “Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?”, Osteoarthritis and Cartilage 7 (1999) pp. 15-28.
Final Office Action for U.S. Appl. No. 11/081,103, mailed Aug. 11, 2010.
Non-Final Office Action for U.S. Appl. No. 12/010,984, mailed Aug. 16, 2010.
U.S. Appl. No. 12/924,132, filed Sep. 21, 2010.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2008/085522, issued Jun. 10, 2010.
Non-final Office Action for U.S. Appl. No. 12/322,996, mailed Apr. 4, 2011.
Final Office Action for U.S. Appl. No. 12/179,034, mailed Jan. 27, 2012.
Non-final Office Action for U.S. Appl. No. 12/381,072, mailed Jan. 23, 2012.
First Action Interview Pilot Program Pre-Interview Communication for U.S. Appl. No. 12/508,892, mailed Jan. 17, 2012.
Non-final Office Action for U.S. Appl. No. 12/924,132, mailed Feb. 21, 2012.
First Action Interview Pilot Program Pre-Interview Communication for U.S. Appl. No. 12/696,366, mailed Oct. 13, 2011.
Non-final Office Action for U.S. Appl. No. 11/081,103, mailed Nov. 28, 2011.
Non-final Office Action for U.S. Appl. No. 12/508,892, mailed Dec. 7, 2011.
Sedgwick at al., “Studies into the influence of carrageenan-induced inflammation on articular cartilage degradation using implantaton into air pouches”, British Journal of Experimental Pathology, vol. 66, (1985), pp. 445-453.
Non-final Office Action for U.S. Appl. No. 13/025,722, mailed May 1, 2013.
van Beuningen et al., “Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint”, Laboratory Investigation; a Journal of Technical Methods and Pathology, vol. 71, No. 2, (1994), pp. 279-290.
Glansbeek et al., “Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints”, Laboratory Investigation; a Journal of Technical Methods and Pathology , vol. 78, No. 2, (1998), pp. 133-142.
Wan et al., “TGF-[beta]/BMP signaling in cartilage and bone cells”, Current Opinion in Orthopedics, vol. 13, Issue 5, Oct. 2002, pp. 368-374.
Seyedin et al. “Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta”, Journal of Biol. Chem. vol. 261, No. 13, May 5, 1986, pp. 5693-5695.
Final Office Action for U.S. Appl. No. 12/381,072, mailed Sep. 6, 2013.
Communication pursuant to Article 94(3) EPC for European Patent Application No. 09 717 359.5, dated Nov. 19, 2013.
Communication pursuant to Article 94(3) EPC for European Patent Application No. 05 728 956.3, dated Sep. 2, 2013.
Non-Final Office Action, mailed Jun. 17, 2014, for U.S. Appl. No. 12/381,072.
Non-final Office Action for U.S. Appl. No. 12/381,072, mailed Feb. 24, 2014.
Related Publications (1)
Number Date Country
20110224797 A1 Sep 2011 US
Continuations (1)
Number Date Country
Parent 11657042 Jan 2007 US
Child 12881988 US