Two-piece deflection drift angle

Information

  • Patent Grant
  • 11920344
  • Patent Number
    11,920,344
  • Date Filed
    Monday, March 7, 2022
    2 years ago
  • Date Issued
    Tuesday, March 5, 2024
    10 months ago
  • Inventors
  • Original Assignees
    • CEMCO, LLC (City of Industry, CA, US)
  • Examiners
    • Mattei; Brian D
    • Sadlon; Joseph J.
    Agents
    • Knobbe, Martens, Olson & Bear LLP
Abstract
A fire-rated component for a fire-rated joint, such as a head-of-wall assembly, includes a fire-rated assembly include a fire-rated angle and a gasket profile. The fire-rated angle can be coupled with the gasket profile to form a single unit within the head-of-wall assembly.
Description
INCORPORATION BY REFERENCE

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference in their entirety.


BACKGROUND
Field

The disclosure generally relates to fire-rated building structures. In particular, the disclosure relates to fire-rated joint systems, wall assemblies, and other building structures that incorporate the fire-rated joint systems.


Description of Related Art

Fire-rated construction components and assemblies are commonly used in the construction industry. These components and assemblies are aimed at inhibiting or preventing fire, heat, or smoke from leaving one room or other portion of a building and entering another room or portion of a building. The fire, heat or smoke usually moves between rooms through vents, joints in walls, or other openings. The fire-rated components often incorporate fire-retardant materials which substantially block the path of the fire, heat or smoke for at least some period of time. Intumescent materials work well for this purpose, because they swell and char when exposed to flames helping to create a barrier to the fire, heat, and/or smoke.


One particular wall joint with a high potential for allowing fire, heat or smoke to pass from one room to another is the joint between the top of a wall and the ceiling, which can be referred to as a head-of-wall joint. In modern multi-story or multi-level buildings, the head-of-wall joint is often a dynamic joint in which relative movement between the ceiling and the wall is permitted. This relative movement is configured to accommodate deflection in the building due to loading of the ceiling or seismic forces. The conventional method for creating a fire-rated head-of-wall joint is to stuff a fire-resistant mineral wool material into the head-of-wall joint and then spray an elastomeric material over the joint to retain the mineral wool in place. This conventional construction of a fire-rated head-of-wall joint is time-consuming, expensive and has other disadvantages.


A wall assembly commonly used in the construction industry includes a header track, bottom track, a plurality of wall studs and a plurality of wall board members, possibly among other components. A typical header track resembles a generally U-shaped (or some other similarly shaped) elongated channel capable of receiving or covering the ends of wall studs and holding the wall studs in place. The header track also permits the wall assembly to be coupled to an upper horizontal support structure, such as a ceiling or floor of a higher level floor of a multi-level building.


Header tracks generally have a web and a pair of flanges, which extend in the same direction from opposing edges of the web. The header track can be a slotted header track, which includes a plurality of slots spaced along the length of the track and extending in a vertical direction. When the wall studs are placed into the slotted track, each of the plurality of slots aligned with a wall stud accommodates a fastener used to connect the wall stud to the slotted track. The slots allow the wall studs to move generally orthogonally relative to the track, creating a variable deflection gap between the wallboard and the upper horizontal support structure. In those areas of the world where earthquakes are common, movement of the wall studs is important. If the wall studs are rigidly attached to the slotted track and not allowed to move freely in at least one direction, the stability of the wall and the building might be compromised. With the plurality of slots, the wall studs are free to move. Even in locations in which earthquakes are not common, movement between the studs and the header track can be desirable to accommodate movement of the building structure due to other loads, such as stationary or moving overhead loads.


Recently, improvements to fire-rated head-of-wall joints have been developed. One example is the use a metal profile having a layer of intumescent material in a head-of-wall joint, such as the fire-rated angle manufactured and sold by the Applicant under the trade name Deflection Drift Angle (DDA™). The DDA™ angle is further described in U.S. Pat. No. 8,595,999, the entirety of which is hereby incorporated by reference. The DDA™ angle can be installed along with the installation of the header track or can be installed after the installation of the header track. Such an arrangement avoids the need to have the framers return after the installation of the wall board to install fire sealant in the deflection gap between the edge of the wall board and the overhead structure. When temperatures rise (e.g., due to a fire), the intumescent material on the DDA™ fire block product expands. This expansion creates a barrier which fills the deflection gap and inhibits or at least substantially prevents fire, heat and smoke from moving through the head-of-wall joint and entering an adjacent room for at least some period of time.


SUMMARY

Although the DDA™ fire block represents an improvement over the conventional method of stuffing mineral wool material into the head-of-wall joint and applying the elastomeric spray material over the mineral wool, there still exists room for improved or alternative products, materials and methods for efficiently and cost-effectively creating fire-rated wall joints. The systems, methods and devices described herein have innovative aspects, no single one of which is indispensable or solely responsible for their desirable attributes. Without limiting the scope of the claims, some of the advantageous features will now be summarized.


According to one aspect, a fire-rated component for sealing a head-of-wall gap, the component includes a fire-rated angle of a first material including an upper flange and a lower flange. The upper flange connects with the lower flange at a corner. A gasket profile of a second material includes an upper flange and a lower flange, the lower flange connected with the upper flange at a corner. A fire-blocking strip connects with the lower flange. The fire-rated angle is coupled with the gasket profile.


According to another aspect, the lower flange of the gasket profile includes a slot. A lower end of the lower flange of the fire-rated angle disposed within the slot couples the fire-rated angle with the gasket profile.


According to another aspect, the upper flange of the fire-rated angle includes a planar section.


According to another aspect, the lower flange of the fire-rated angle includes a planar section.


According to another aspect, the upper flange of the fire-rated angle is perpendicular with the lower flange of the fire-rated angle.


According to another aspect, the first material of the fire-rated angle is steel and the second material of the gasket profile is vinyl.


According to another aspect, the lower flange of the fire-rated angle includes a second fire-blocking strip.


According to another aspect, the upper flanges are generally aligned and the lower flanges are generally aligned.


According to another aspect, the upper flange of the gasket profile has a flare-out configured to seal against an overhead structure.


According to another aspect, the lower flange of the gasket profile includes an upper section and a lower section, the upper section offset from the lower section by a transition section.


According to another aspect, the upper section is aligned parallel with the lower section.


According to another aspect, an outer surface of the fire-blocking strip is aligned with the lower section of the lower flange of the gasket profile.


According to another aspect, the second material is a polymer.


According to another aspect, a fire-rated component for sealing a head-of-wall gap includes a fire-rated insert of a first material. A gasket profile or a second material includes an upper flange, a lower flange; and a fire-blocking strip coupled on an interior side of the lower flange. The fire-rated insert is coupled with an interior side of the gasket profile.


According to another aspect, the first material of the fire-rated insert comprises steel and the second material of the gasket profile comprises vinyl.


According to another aspect, an upper end of the fire-rated insert includes a second fire-blocking strip.


According to another aspect, the lower flange of the gasket profile includes an upper section and a lower section, the upper section offset from the lower section by a transition section.


According to another aspect, the upper section is aligned parallel with the lower section.


According to another aspect, the lower flange includes an inner flange, the inner flange enclosing a portion of the interior side to form a slot, a lower end of the fire-rated insert received within the slot.


According to another aspect, the fire-rated insert contacts the fire-blocking strip.


According to another aspect, a wall assembly includes a header track configured to be coupled to a surface of an overhead structure, the header track having a web and first and second flanges extending from the web in the same direction, wherein each of the first and second flanges is substantially planar such that the track defines a substantially U-shaped cross section. At least one stud couples to the header track, an upper end of the stud located between the first and second flanges. At least one wallboard couples to the stud, an upper end of the wallboard overlapping the first flange of the header track. A deflection gap is formed between the upper end of the wallboard and the surface of the overhead structure. The deflection gap is variable between a closed position and an open position. The upper flanges of the fire-rated angle and the gasket profile are positioned between the web and the overhead structure and the lower flanges of the fire-rated angle and the gasket profile are positioned at least partially within the deflection gap.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.



FIG. 1 is an exploded view of a fire blocking assembly, including a fire-rated angle and a gasket profile;



FIG. 2 shows an assembled view of the fire-rated assembly;



FIG. 3 shows the fire-rated assembly installed within a deflection gap in a head-of-wall assembly;



FIG. 4 shows the head-of-wall assembly in a closed configuration;



FIG. 5 shows the head-of-wall assembly with the fire blocking assembly in an expanded configuration after being exposed to heat or fire;



FIG. 6 shows the fire-rated assembly preinstalled on a header track of the head-of-wall assembly;



FIG. 7 shows another embodiment of a fire-rated assembly including gasket profile and a fire-rated insert;



FIG. 8 shows the fire-rated assembly in an assembled configuration;



FIG. 9A shows a head-of-wall assembly with the fire-rated assembly installed within a deflection gap;



FIG. 9B shows the head-of-wall assembly in a closed configuration;



FIG. 9C shows the position of a fastener in the closed configuration;



FIG. 9D shows the position of the fastener in an open configuration of the head-of-wall assembly.





DETAILED DESCRIPTION

The various features and advantages of the systems, devices, and methods of the technology described herein will become more fully apparent from the following description of the embodiments illustrated in the figures. These embodiments are intended to illustrate the principles of this disclosure, and this disclosure should not be limited to merely the illustrated examples. The features of the illustrated embodiments can be modified, combined, removed, and/or substituted as will be apparent to those of ordinary skill in the art upon consideration of the principles disclosed herein.


The following disclosure provides an elongate, fire-rated joint component or fire-blocking assembly, which is configured to provide fire protection and pass the relevant UL fire rating tests, or other relevant fire rating tests or standards. The fire-rated assembly may be installed in a deflection gap of a wall assembly that allows dynamic movement according to the requirements of UL-2079.


In one embodiment, the two piece fire-rated assembly can include one piece made of steel and one piece made of vinyl. One reason for this is that steel, generally, will not melt in a fire and will provide a continuous level of fire protection to the deflection joint. However, the steel profile by itself may not provide enough fire protection to pass a UL-2079 5th edition fire test and/or it may not provide adequate sound protection to the deflection gap. The second piece made from vinyl. The vinyl profile slides over the steel profile and locks them together so that the two can be assembled and installed as one piece.


The vinyl profile functions to provide sound protection. Unlike steel, the vinyl profile is very flexible and when the vinyl profile meets the overhead structure it can compress and seal off against uneven overhead structures to improve sound protection.


During a fire, a portion of the vinyl profile can flap downward and expose the intumescent material to the fire and heat which may cause the intumescent to expand upward and seal off the deflection gap. This whole process can take up to 20 minutes before the deflection is sealed off. During this time the steel profile will remain in place over the leg of the header track and continue to offer a level of fire protection. Without the steel profile, the fire and heat would be able to pass through the deflection gap while the intumescent tape of vinyl profile was still expanding.



FIG. 1 illustrates an exploded view of the fire-rated profile assembly 10. The fire-rated profile assembly 10 is shown in cross-section. The fire-rated profile assembly 10 can be an elongate strip or gasket that can extend along the upper edge of a wall in a head-of-wall assembly as shown in cross-section in FIG. 3. The fire-rated profile assembly 10 can include a fire-rated angle 15 and a gasket profile 16. The fire-rated angle 15 and the gasket profile 16 can be formed in various lengths (e.g., 5 foot, 10 foot, 12 foot, or other), each preferably having the same cross-section and shape throughout. Assembled together, the fire-rated angle 15 and the gasket profile 16 can form the fire-rated profile assembly 10. The fire-rated profile assembly 10 can be installed across a head-of-wall assembly 100 to prevent the passage of smoke, heat, noise and/or other gases from passing through the head-of-wall assembly from one side of the wall to the other.


The fire-rated angle 15 can include an upper flange 19. The upper flange 19 can include one or more planar, curvilinear and/or stepped regions. The upper flange 19 can connect with a lower flange 21 at a corner 23. The lower flange 21 can include one or more planar, curvilinear and/or stepped regions. In the implementation shown in FIG. 1, the upper flange 19 is planar throughout and the lower flange 21 is planar throughout. The upper flange 19 can be perpendicular with the lower flange 21. Alternatively, the upper and lower flanges 19, 21 can be at an angle other than perpendicular. The lower flange 21 can extend from the corner 23 to a lower end 22. Optionally, the lower end 22 can comprise a plurality of through holes or apertures extending therethrough for assembly within the head-of-wall assembly.


The lower flange 21 can include a fire blocking strip 24. The fire blocking strip 24 can include an intumescent material that expands upon being heated. The fire blocking strip 24 can be attached by an adhesive with the lower flange 21. The fire blocking strip 24 can be attached on an interior side of the lower flange 27 (e.g., on the side of the upper flange 19 relative to the corner 23). The fire blocking strip 24 can be located adjacent to and/or in contact with the upper flange 19. The fire blocking strip 24 can extend along the interior surface of the lower flange 21 between the corner 23 and the lower end 22. Optionally, the fire blocking strip 24 can extend all the way from the corner 23 or the upper flange 19 to the lower end 22.


The fire-rated angle 15 can comprise a steel or other metal material. The steel can be generally resistant to deformation when exposed to heat or fire for at least a limited amount of time. The steel material can facilitate the fire-rated profile assembly 10 retaining its shape at least partially or temporarily when exposed to heat or fire.


The gasket profile 16 can include an upper flange 25. The upper flange 25 can include one or more planar, curvilinear and/or stepped regions. The upper flange 25 can include a flare out for forming a corner 29. The corner 29 can be form a compressible seal. The gasket profile 16 can include a lower flange 27. The lower flange 27 can include one or more planar, curvilinear and/or stepped regions. The lower flange 27 can connect with the upper flange 25 at the corner 29. The lower flange 27 can extend from the corner 29 to a hem or hook portion 37.


The lower flange 27 can include an upper section 31. The upper section 31 can be planar. The lower flange 27 can include a lower section 33. The lower section 33 can be an offset leg. The lower section 33 can be planar. The lower section 33 can attach with the upper section 31 through a transition section 35. The transition section 35 can offset the planar portions of the upper section 31 from the lower section 33. The direction of offset of the transition 35 can be in the same direction of the upper flange 25 extending from the corner 29. The offset of the transition can be the same width as a common framing screw. This will this will help maintain a tight seal when a drywall or wallboard is installed over the lower section 33. It will also allow the fire rated assembly 10 to be pre-attached to a header track, as described further below.


The lower section 33 can include the hook portion 37. The hook portion 37 can include a portion of the lower flange 27 that is bent backwards on itself to extend generally upwardly. The hook portion 37 can form a slot. The slot can be sized to receive the lower end 22 of the fire-rated angle 15.


The lower flange 27 can include a fire blocking strip 34. The fire blocking strip 34 can be adhesively attached with the lower flange 27. The fire blocking strip 34 can be attached on an interior side of the lower flange 27. The fire blocking strip 34 can be attached with the upper section 31. The fire blocking strip 34 can be adjacent to the corner 29 and/or the upper flange 25. The fire blocking strip 34 can extend from the corner 29 towards the transition 35. An outer surface of the fire blocking strip 34 can be aligned with the lower section 33, as shown by the dotted line in FIG. 1. The transition section 35 can be sized to offset the lower section 33 from the upper section 31 by the thickness of the fire blocking strip 34.


The gasket profile 16 can be formed of a vinyl or other polymer material. The material of the gasket profile 16 can be sensitive to heat such that it deforms when heated at temperatures associated with fires.



FIG. 2 shows the fire-rated angle 15 assembled with the gasket profile 16 to form the fire-rated profile assembly 10. The lower end 22 can be assembled within the slot of the hook portion 37. The lower flange 21 can be assembled against the lower section 33 and/or the fire blocking strip 34. The upper flange 19 can be assembled in contact with the upper flange 25. The corner 23 can be offset from the corner 29 by the flare out of the upper flange 25. The fire blocking strip 24 can be aligned with or partially offset with the fire blocking strip 34. A length of the lower flange 21 can be sized such that the upper flange 19 contacts the upper flange 25 with the lower end 22 assembled within the slot of the hook portion 37.



FIG. 3 shows the fire-rated profile assembly 10 installed within a head-of-wall assembly 100. The head-of-wall assembly can include a ceiling or overhead structure 120. A header track 130 can be attached with the overhead structure 120. The header track 130 can include a web 136, a first flange 132 extending from the web 136 and a second flange 134 extending from the web 136. The first flange 132 and the second flange 134 can extend generally perpendicular to and on opposite sides of the web 136. A stud 140 can be received between the first flange 132 and the second flange 134. A wall board 150 can be attached with the stud 140. The upper end of the wall board 150 can form a deflection gap between the overhead structure and the wall board 150. The deflection gap 160 can be variable as the stud 140 and the wall board 150 move relative to the overhead structure 120.


The fire-rated profile assembly 10 can be assembled within the deflection gap 160. The upper flanges 19, 25 can be installed between the web 136 and the overhead structure 120. The lower flanges 21, 27 can be installed along the length of the second flange 134. The lower flanges 21, 27 can be installed between the second flange 134 and the wall board 150. The fire blocking strip 24 can be in contact with the second flange 134. The upper section 31 can be in slidable contact with an inner face of the wall board 150, as the wall board 150 cycles between open and closed configurations of the head-of-wall assembly 100. The corner 29 can be compressed against the overhead structure 120 to form a seal therewith.


The fire-rated profile assembly 10 can be maintained within the deflection gap 160 through mechanical engagement between the overhead structure 120 and the web 136. The wall board 150 installed over the lower flanges 21, 27 can also maintain the position of the fire-rated profile assembly 10 within the deflection gap 160. Advantageously, this arrangement can be faster and easier to install than using mechanical fasteners or traditional stuff-and-spray techniques. FIG. 4 shows the head-of-wall assembly 100 with the deflection gap 160 in a closed configuration with the wall board 150 slid over the lower flange 27.



FIG. 5 shows the results of fire or heat on the head-of-wall assembly 100 with the fire-rated profile assembly 10 installed within the deflection gap 160. The heat can cause the material of the gasket profile 16 to soften and fold outwardly across the top portion of the wall board 150. Once the portion of the gasket profile bends down the fire-blocking strip 34 faces the overhead structure 120. This can be ideal for expansion of the intumescent because it will expand upward against the overhead structure 120 and seal off the deflection gap 160. The fire-rated angle 15 can remain in place to offer some fire protection while the intumescent is expanding. The fire-rated angle 15 can remain in place being formed of a metal or steel material. The fire blocking strip 34 can expand upwardly towards the overhead structure 120. The upper flange 25 can at least partially contain the expanding intumescent material of the fire blocking strip 34. This can prevent the fire blocking strip 4 from falling out of the deflection gap 160 prematurely. The fire blocking strip 24 can also expand to provide additional blockage across the deflection gap 160.



FIG. 6 shows the fire-rated profile assembly 10 preinstalled on the header track 130. A fastener 170 can be installed through the lower portion 33 of the gasket profile 16. The fastener 170 can be inserted through a hole formed in the lower end 22 of the fire-rated angle 15 and/or the lower flange 27 of the gasket profile 16. The fastener 170 can be installed through the second flange 134 of the header track 130. The fastener 170 can be offset from any of the studs of the head-of-wall assembly 100 (e.g., into and out of the page as shown in FIG. 6).


Advantageously, the fire-rated profile assembly 10 can be pre-installed on the header track 130. The header track 130 can then be assembled against the overhead structure 120 such as through additional mechanical fasteners through the web 136. The pre-installation can dramatically reduce the amount of time required for attaching the fire-rated profile assembly 10 within the head-of-wall assembly 100. It can be much easier to pre-install the fire-rated profile assembly 10 than inserting the upper flanges 19, 25 between the overhead structure 120 and the web 136. The transition section 135 can be sized to accommodate the head of the fastener 170 so that the wall board 150 can be engaged with the upper section 131 and/or the head of the fastener 170.



FIG. 7 shows another embodiment of a fire-rated assembly 200. The fire-rated assembly 200 can be a two-piece fire-rated assembly including a vinyl or other polymer member and a steel or other metallic member. The fire-rated assembly 200 can include a gasket profile 216. The gasket profile 216 can include an upper flange 225. The upper flange 225 can include one or more planar, curvilinear or stepped sections. The upper flange 225 can include a downward extending flange 226. The downward extending flange 226 can include a flat region that is generally vertical.


The upper flange 225 can include or be coupled with a corner 229. The corner 229 can be a curved or bent section of the material of the gasket profile 216. A lower flange 227 can extend from the corner 229. The lower flange 227 can include an upper section 231 and a lower section 233. The upper section 231 can include straight, curvilinear or stepped regions. The upper section 231 can be coupled with the lower section 233 by a transition section 235. The transition section 235 can be orthogonal to the flat portion or straight portion of the upper section 231. The lower section 233 can include straight, curvilinear or stepped regions. The lower section 233 can couple on an upper end with the transition section 235. The lower section 233 and/or the upper section 231 can include a planar section that is perpendicular to the transition section 235.


The lower section 233 can include a kick out 237. The kick out 237 can comprise a planar section that is at an angle with respect to a planar section of the lower section 233. The kick out 237 can be angled towards an exterior side of the gasket profile 216 (e.g., opposite the extension of the upper flange 225).


The transition section 235 can include an inner flange 236. The inner flange 236 can extend from an upper end of the lower section 233. The inner flange 236 can at least partially form an interior region of the gasket profile 216 between the upper section 231 and the inner flange 236. The upper section 231 can include a fire blocking strip 234. The fire blocking strip 234 can be located between the corner 229 and the transition section 235 along the upper section 231. The fire blocking strip 234 can be located within the interior section of the gasket profile 216.


The fire-rated assembly 200 can further include a fire-rated insert 215. The fire-rated insert 215 can comprise a steel plate. The steel plate can include planar, straight, curvilinear or stepped regions. The insert 215 can include a straight section 221. The straight section 221 can extend between an upper end 223 and a lower end 222. The upper end 223 can include a fire blocking strip 224. The fire blocking strip 224 can extend between the upper end 223 and the lower end 222.


As shown in FIG. 8, in an assembled configuration the fire-rated insert 215 can be installed within the interior section of the gasket profile 216 (e.g., formed by the inner flange 236, the upper flange 225, and/or the upper section 231). The upper end 223 can be installed within a slot formed by the downwardly extending flange 226. The lower end 222 can be installed within a slot formed by the inner flange 236. The fire-rated insert 215 can be installed within the interior of the gasket profile 216 by elastically deforming the material of the gasket profile 216 (or sliding at one end of the gasket profile 216). In the assembled configuration, the straight section 221 can contact the fire blocking strip 234. The fire blocking strip 224 can contact the downwardly extending flange 226 and/or the corner 229.


A head-of-wall assembly 300 can include an overhead structure 320, a header track 330 attached with the overhead surface 320. The header track 330 can include a first flange 332, a second flange 334, and a web 336. A stud 340 can be assembled between the first flange 332 and the second flange 334 and coupled therewith by a first mechanical fastener 374. A wall board 350 can be attached with the stud 340. A deflection gap 360 can be formed between the upper end of the wall board 350 and the overhead structure 320. The stud 340 and the wallboard 350 can be movable vertically to open and close the deflection gap 360.


The fire-rated assembly 200 can be installed alongside of the second flange 334 within the deflection gap 360. A second mechanical fastener 372 can be installed through the lower section 233 of the lower flange 227. The second fastener 372 can attach the assembly 200 with the second flange 334. In certain implementations, the fire-rated assembly 200 can be preinstalled on the header track 330. The corner 229 can be compressed against the overhead structure 320 to form a seal therewith. The interior side of the fire-rated assembly 200 can face the second flange 334. The downwardly extending flange 226, the lower section 233, and/or the inner flange 236 can be flush against the second flange 334. The insert 215 can be located within the interior portion of the gasket profile 216 facing the second flange 334.


The first fastener 374 can be offset from the second fastener 372 (e.g., into and out of the page as shown in FIG. 9A). In other words, the fire-rated assembly 200 can be attached at locations along the header track 330 that are not in axial alignment (into and out of the page) with the second fastener 372 or the stud 340. The first fastener 374 can be movable within a slot 334a, as shown in FIG. 9C (closed configuration) and 9D (open configuration), as the deflection gap 360 cycles between open and closed configurations. Accordingly, as the deflection gap moves between the open and closed configurations, the head of the first fastener 374 can move underneath the lower section 233 of the lower flange 227. The flexible material of the gasket profile 216 can allow passage of the first fastener 374. The vinyl material is flexible so that, even though the gasket profile is attached to the second flange 334 of the track 330 with the second fastener 372 (e.g. framing screw) the first fastener 374 (e.g., framing screw) that attaches the stud 340 to the track 330 will still be able to cycle under the gasket profile flange 227, as shown. This sliding can be facilitate by the kick out 237. Optionally, the inner flange 236 can include a kick out, like the kick out 237.


When the fire-rated assembly 200 is exposed to heat or fire, the fire blocking strips 224 and/or 234 can expand to fill the deflection gap 360, the formable material of the gasket profile 216 can be at least partially maintained in its position by the insert 215. The insert 215 along with the upper section 231 and the upper flange 225 can fold outwardly across the top of the wall board 350 when exposed to heat or fire. The insert 215 can maintain structural integrity of the upper section 231 and thereby direct the expansion of the fire blocking strips 224, 234 towards the overhead structure 320 to close the deflection gap 360.


Certain Terminology

Terms of orientation used herein, such as “top,” “bottom,” “proximal,” “distal,” “longitudinal,” “lateral,” and “end,” are used in the context of the illustrated embodiment. However, the present disclosure should not be limited to the illustrated orientation. Indeed, other orientations are possible and are within the scope of this disclosure. Terms relating to circular shapes as used herein, such as diameter or radius, should be understood not to require perfect circular structures, but rather should be applied to any suitable structure with a cross-sectional region that can be measured from side-to-side. Terms relating to shapes generally, such as “circular,” “cylindrical,” “semi-circular,” or “semi-cylindrical” or any related or similar terms, are not required to conform strictly to the mathematical definitions of circles or cylinders or other structures, but can encompass structures that are reasonably close approximations.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.


Conjunctive language, such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, in some embodiments, as the context may dictate, the terms “approximately,” “about,” and “substantially,” may refer to an amount that is within less than or equal to 10% of the stated amount. The term “generally” as used herein represents a value, amount, or characteristic that predominantly includes or tends toward a particular value, amount, or characteristic. As an example, in certain embodiments, as the context may dictate, the term “generally parallel” can refer to something that departs from exactly parallel by less than or equal to 20 degrees. Ranges given are inclusive of endpoints.


Summary

Several illustrative embodiments of head-of-wall assemblies and components such as sound-blocking and/or fire-blocking gasket profiles have been disclosed. Although this disclosure has been described in terms of certain illustrative embodiments and uses, other embodiments and other uses, including embodiments and uses which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Components, elements, features, acts, or steps can be arranged or performed differently than described and components, elements, features, acts, or steps can be combined, merged, added, or left out in various embodiments. All possible combinations and subcombinations of elements and components described herein are intended to be included in this disclosure. No single feature or group of features is necessary or indispensable.


Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.


Any portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in one embodiment or example in this disclosure can be combined or used with (or instead of) any other portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in a different embodiment, flowchart, or example. The embodiments and examples described herein are not intended to be discrete and separate from each other. Combinations, variations, and some implementations of the disclosed features are within the scope of this disclosure.


While operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Additionally, the operations may be rearranged or reordered in some implementations. Also, the separation of various components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, some implementations are within the scope of this disclosure.


Further, while illustrative embodiments have been described, any embodiments having equivalent elements, modifications, omissions, and/or combinations are also within the scope of this disclosure. Moreover, although certain aspects, advantages, and novel features are described herein, not necessarily all such advantages may be achieved in accordance with any particular embodiment. For example, some embodiments within the scope of this disclosure achieve one advantage, or a group of advantages, as taught herein without necessarily achieving other advantages taught or suggested herein. Further, some embodiments may achieve different advantages than those taught or suggested herein.


Some embodiments have been described in connection with the accompanying drawings. The figures are drawn and/or shown to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed invention. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, any methods described herein may be practiced using any device suitable for performing the recited steps.


For purposes of summarizing the disclosure, certain aspects, advantages and features of the inventions have been described herein. Not all, or any such advantages are necessarily achieved in accordance with any particular embodiment of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable. In many embodiments, the devices, systems, and methods may be configured differently than illustrated in the figures or description herein. For example, various functionalities provided by the illustrated modules can be combined, rearranged, added, or deleted. In some embodiments, additional or different processors or modules may perform some or all of the functionalities described with reference to the example embodiment described and illustrated in the figures. Many implementation variations are possible. Any of the features, structures, steps, or processes disclosed in this specification can be included in any embodiment.


In summary, various embodiments and examples of head-of-wall assemblies and fire blocking tracks and related methods have been disclosed. This disclosure extends beyond the specifically disclosed embodiments and examples to other alternative embodiments and/or other uses of the embodiments, as well as to certain modifications and equivalents thereof. Moreover, this disclosure expressly contemplates that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another. Accordingly, the scope of this disclosure should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.

Claims
  • 1. A fire-rated component for sealing a perimeter building joint, the component comprising: a planar insert piece of a first material comprising an upper free end and a lower free end; anda gasket profile of a second material comprising: an upper portion;a lower portion;a middle portion connecting the upper portion and the lower portion;at least one fire-blocking material coupled to the middle portion;wherein the planar insert piece is secured within the gasket profile such that the upper free end of the insert piece is disposed within a cavity space in the upper portion and the lower free end of the insert piece is disposed within a cavity space in the lower portion.
  • 2. The fire-rated component of claim 1, wherein the first material of the insert piece comprises steel and the second material of the gasket profile comprises vinyl.
  • 3. The fire-rated component of claim 1, wherein the insert piece further comprises a fire blocking material.
  • 4. The fire-rated component of claim 1, wherein the fire-blocking material is an intumescent tape.
  • 5. The fire-rated component of claim 1, wherein the upper portion comprises a round top.
  • 6. The fire-rated component of claim 1, wherein the insert piece is aligned parallel with the middle portion in use.
  • 7. The fire-rated component of claim 6, wherein the insert piece contacts the fire-blocking material of the gasket profile in use.
  • 8. The fire-rated component of claim 7, wherein the insert piece is a flat member.
  • 9. A wall assembly comprising: a header track configured to be coupled to a surface of an adjacent structure, the header track having a web, a first flange and a second flange;at least one stud coupled to the header track, an upper end of the stud located between the first and second flanges;at least one wallboard coupled to the stud, an upper end of the wallboard overlapping the first flange of the header track;a deflection gap formed between the upper end of the wallboard and the surface of the adjacent structure, the deflection gap being variable between a closed position and an open position; andthe fire-rated component of claim 1, wherein the lower portion of the gasket profile is positioned between a bottom section of the first flange of the header track and the upper end of the wallboard.
  • 10. The wall assembly of claim 9, wherein the lower portion is coupled to the header track with a mechanical fastener.
  • 11. The wall assembly of claim 9, wherein the lower portion contacts the header track in use.
US Referenced Citations (585)
Number Name Date Kind
661832 Wilkinson Nov 1900 A
716628 Dickey Dec 1902 A
965595 Nicholson Jul 1910 A
1130722 Fletcher Mar 1915 A
1563651 Pomerantz Dec 1925 A
1719728 Saunders Jul 1929 A
2020576 Runde Nov 1935 A
2105771 Holdsworth Jan 1938 A
2114386 Killion Apr 1938 A
2218426 Hulbert, Jr. Oct 1940 A
2556878 Kohlhaas Jun 1951 A
2664739 Marcy Jan 1954 A
2683927 Maronek Jul 1954 A
2733786 Drake Feb 1956 A
2994114 Black Aug 1961 A
3019866 Grabowski Feb 1962 A
3041682 Alderfer et al. Jul 1962 A
3129792 Gwynne Apr 1964 A
3153467 Nelsson et al. Oct 1964 A
3271920 Downing, Jr. Sep 1966 A
3309826 Zinn Mar 1967 A
3324615 Zinn Jun 1967 A
3346909 Blackburn Oct 1967 A
3355852 Lally Dec 1967 A
3397495 Thompson Aug 1968 A
3460302 Cooper Aug 1969 A
3481090 Joseph Dec 1969 A
3493460 Windecker Feb 1970 A
3495417 Ratliff Feb 1970 A
3537219 Navarre Nov 1970 A
3562985 Nicosia Feb 1971 A
3566559 Dickson Mar 1971 A
3600854 Dallaire et al. Aug 1971 A
3604167 Hays Sep 1971 A
3609933 Jahn et al. Oct 1971 A
3648419 Marks Mar 1972 A
3668041 Lonning Jun 1972 A
3683569 Holm Aug 1972 A
3696569 Didry Oct 1972 A
3707819 Calhoun et al. Jan 1973 A
3713263 Mullen Jan 1973 A
3730477 Wavrunek May 1973 A
3744199 Navarre Jul 1973 A
3757480 Young Sep 1973 A
3786604 Kramer Jan 1974 A
3837126 Voiturier et al. Sep 1974 A
3839839 Tillisch et al. Oct 1974 A
3866370 Guarino et al. Feb 1975 A
3908328 Nelsson Sep 1975 A
3921346 Sauer et al. Nov 1975 A
3922830 Guarino et al. Dec 1975 A
3934066 Murch Jan 1976 A
3935681 Voiturier et al. Feb 1976 A
3955330 Wendt May 1976 A
3964214 Wendt Jun 1976 A
3974607 Balinski Aug 1976 A
3976825 Anderberg Aug 1976 A
3998027 Wendt et al. Dec 1976 A
4011704 O'Konski Mar 1977 A
4017090 Cohen Apr 1977 A
4034526 Deslaugiers Jul 1977 A
4103463 Dixon Aug 1978 A
4114335 Carroll Sep 1978 A
4122203 Stahl Oct 1978 A
4130972 Varlonga Dec 1978 A
4139664 Wenrick Feb 1979 A
4144335 Edwards Mar 1979 A
4144385 Downing Mar 1979 A
4152878 Balinski May 1979 A
4164107 Kraemling et al. Aug 1979 A
4178728 Ortmanns et al. Dec 1979 A
4197687 Benoit Apr 1980 A
4203264 Kiefer et al. May 1980 A
4205498 Unayama Jun 1980 A
4217731 Saino Aug 1980 A
4269890 Breitling et al. May 1981 A
4276332 Castle Jun 1981 A
4281494 Weinar Aug 1981 A
4283892 Brown Aug 1981 A
4295304 Kim Oct 1981 A
4318253 Wedel Mar 1982 A
4324835 Keen Apr 1982 A
4329820 Wendt May 1982 A
4356672 Beckman et al. Nov 1982 A
4361994 Carver Dec 1982 A
4424653 Heinen Jan 1984 A
4433732 Licht et al. Feb 1984 A
4434592 Reneault et al. Mar 1984 A
4437274 Slocum et al. Mar 1984 A
4454690 Dixon Jun 1984 A
4461120 Hemmerling Jul 1984 A
4467578 Weinar Aug 1984 A
4480419 Crites Nov 1984 A
4495238 Adiletta Jan 1985 A
4497150 Wendt et al. Feb 1985 A
4507901 Carroll Apr 1985 A
4509559 Cheetham et al. Apr 1985 A
4517782 Shamszadeh May 1985 A
4574454 Dyson Mar 1986 A
4575979 Mariani Mar 1986 A
4578913 Eich Apr 1986 A
4598516 Groshong Jul 1986 A
4622791 Cook Nov 1986 A
4622794 Geortner Nov 1986 A
4632865 Tzur Dec 1986 A
4649089 Thwaites Mar 1987 A
4663204 Langham May 1987 A
4672785 Salvo Jun 1987 A
4709517 Mitchell et al. Dec 1987 A
4711183 Handler et al. Dec 1987 A
4723385 Kallstrom Feb 1988 A
4756945 Gibb Jul 1988 A
4761927 O'Keeffe et al. Aug 1988 A
4787767 Wendt Nov 1988 A
4788802 Wokas Dec 1988 A
4798035 Mitchell Jan 1989 A
4805364 Smolik Feb 1989 A
4810986 Leupold Mar 1989 A
4822659 Anderson et al. Apr 1989 A
4825610 Gasteiger May 1989 A
4830913 Ortmans et al. May 1989 A
4845904 Menchetti Jul 1989 A
4850173 Beyer et al. Jul 1989 A
4850385 Harbeke Jul 1989 A
4854096 Smolik Aug 1989 A
4854107 Roberts Aug 1989 A
4866898 LaRoche et al. Sep 1989 A
4881352 Glockenstein Nov 1989 A
4885884 Schilger Dec 1989 A
4897976 Williams et al. Feb 1990 A
4899510 Propst Feb 1990 A
4914880 Albertini Apr 1990 A
4918761 Harbeke Apr 1990 A
4930276 Bawa et al. Jun 1990 A
4935281 Tolbert et al. Jun 1990 A
4982540 Thompson Jan 1991 A
4986040 Prewer et al. Jan 1991 A
4987719 Goodson, Jr. Jan 1991 A
4992310 Gelb et al. Feb 1991 A
5010702 Daw et al. Apr 1991 A
5058342 Crompton Oct 1991 A
5090170 Propst Feb 1992 A
5094780 von Bonin Mar 1992 A
5103589 Crawford Apr 1992 A
5105594 Kirchner Apr 1992 A
5111579 Andersen May 1992 A
5125203 Daw Jun 1992 A
5127203 Paquette Jul 1992 A
5127760 Brady Jul 1992 A
5140792 Daw et al. Aug 1992 A
5146723 Greenwood et al. Sep 1992 A
5152113 Guddas Oct 1992 A
5155957 Robertson et al. Oct 1992 A
5157883 Meyer Oct 1992 A
5157887 Watterworth, III Oct 1992 A
5167876 Lem Dec 1992 A
5173515 von Bonin et al. Dec 1992 A
5203132 Smolik Apr 1993 A
5205099 Grünhage et al. Apr 1993 A
5212914 Martin et al. May 1993 A
5214894 Glesser-Lott Jun 1993 A
5222335 Petrecca Jun 1993 A
5228254 Honeycutt, Jr. Jul 1993 A
5244709 Vanderstukken Sep 1993 A
5279087 Mann Jan 1994 A
5279088 Heydon Jan 1994 A
5279091 Williams et al. Jan 1994 A
5285615 Gilmour Feb 1994 A
5307600 Simon, Jr. May 1994 A
5315804 Attalla May 1994 A
5319339 Leupold Jun 1994 A
5325651 Meyer et al. Jul 1994 A
5339577 Snyder Aug 1994 A
5347780 Richards et al. Sep 1994 A
5367850 Nicholas Nov 1994 A
5374036 Rogers et al. Dec 1994 A
5376429 McGroarty Dec 1994 A
5390458 Menchetti Feb 1995 A
5390465 Rajecki Feb 1995 A
5394665 Johnson Mar 1995 A
5412919 Pellock et al. May 1995 A
5433991 Boyd, Jr. et al. Jul 1995 A
5452551 Charland et al. Sep 1995 A
5454203 Turner Oct 1995 A
5456050 Ward Oct 1995 A
5460864 Heitkamp Oct 1995 A
5471791 Keller Dec 1995 A
5471805 Becker Dec 1995 A
5475961 Menchetti Dec 1995 A
5477652 Torrey et al. Dec 1995 A
5481834 Kowalczyk Jan 1996 A
5502937 Wilson Apr 1996 A
5505031 Heydon Apr 1996 A
5531051 Chenier, Jr. et al. Jul 1996 A
5552185 De Keyser Sep 1996 A
5592796 Landers Jan 1997 A
5604024 von Bonin Feb 1997 A
5607758 Schwartz Mar 1997 A
5644877 Wood Jul 1997 A
5687538 Frobosilo et al. Nov 1997 A
5689922 Daudet Nov 1997 A
5694726 Wu Dec 1997 A
5709821 von Bonin et al. Jan 1998 A
5724784 Menchetti Mar 1998 A
5735100 Campbell Apr 1998 A
5740635 Gil et al. Apr 1998 A
5740643 Huntley Apr 1998 A
5755066 Becker May 1998 A
5765332 Landin et al. Jun 1998 A
5782690 Gustafson Jul 1998 A
5787651 Horn et al. Aug 1998 A
5797233 Hascall Aug 1998 A
5798679 Pissanetzky Aug 1998 A
5806261 Huebner et al. Sep 1998 A
5820958 Swallow Oct 1998 A
5822935 Mitchell et al. Oct 1998 A
5870866 Herndon Feb 1999 A
5913788 Herren Jun 1999 A
5921041 Egri, II Jul 1999 A
5927041 Sedlmeier et al. Jul 1999 A
5930963 Nichols Aug 1999 A
5930968 Pullman Aug 1999 A
5945182 Fowler et al. Aug 1999 A
5950385 Herren Sep 1999 A
5968615 Schlappa Oct 1999 A
5968669 Liu et al. Oct 1999 A
5970672 Robinson Oct 1999 A
5974750 Landin et al. Nov 1999 A
5974753 Hsu Nov 1999 A
6023898 Josey Feb 2000 A
6058668 Herren May 2000 A
6061985 Kraus et al. May 2000 A
6110559 De Keyser Aug 2000 A
6116404 Heuft et al. Sep 2000 A
6119411 Mateu Gil et al. Sep 2000 A
6125608 Charlson Oct 2000 A
6128874 Olson et al. Oct 2000 A
6128877 Goodman et al. Oct 2000 A
6131352 Barnes et al. Oct 2000 A
6151858 Ruiz et al. Nov 2000 A
6153668 Gestner et al. Nov 2000 A
6176053 St. Germain Jan 2001 B1
6182407 Turpin et al. Feb 2001 B1
6189277 Boscamp Feb 2001 B1
6207077 Burnell-Jones Mar 2001 B1
6207085 Ackerman Mar 2001 B1
6213679 Frobosilo et al. Apr 2001 B1
6216404 Vellrath Apr 2001 B1
6233888 Wu May 2001 B1
6256948 Van Dreumel Jul 2001 B1
6256960 Babcock et al. Jul 2001 B1
6279289 Soder et al. Aug 2001 B1
6305133 Cornwall Oct 2001 B1
6318044 Campbell Nov 2001 B1
6374558 Surowiecki Apr 2002 B1
6381913 Herren May 2002 B2
6393774 Fisher May 2002 B1
6405502 Cornwall Jun 2002 B1
6408578 Tanaka et al. Jun 2002 B1
6430881 Daudet et al. Aug 2002 B1
6470638 Larson Oct 2002 B1
6487825 Silik Dec 2002 B1
6574930 Kiser Jun 2003 B2
6595383 Pietrantoni Jul 2003 B2
6606831 Degelsegger Aug 2003 B2
6647691 Becker et al. Nov 2003 B2
6668499 Degelsegger Dec 2003 B2
6679015 Cornwall Jan 2004 B1
6688056 Von Hoyningen Huene Feb 2004 B2
6698146 Morgan et al. Mar 2004 B2
6705047 Yulkowski Mar 2004 B2
6708627 Wood Mar 2004 B1
6711871 Beirise et al. Mar 2004 B2
6732481 Stahl, Sr. May 2004 B2
6739926 Riach et al. May 2004 B2
6748705 Orszulak Jun 2004 B2
6783345 Morgan et al. Aug 2004 B2
6792733 Wheeler et al. Sep 2004 B2
6799404 Spransy Oct 2004 B2
6843035 Glynn Jan 2005 B1
6854237 Surowiecki Feb 2005 B2
6871470 Stover Mar 2005 B1
6944997 Verkamp Sep 2005 B2
6951162 Shockey et al. Oct 2005 B1
6996944 Shaw Feb 2006 B2
7043880 Morgan et al. May 2006 B2
7059092 Harkins et al. Jun 2006 B2
7104024 deGirolamo et al. Sep 2006 B1
7152385 Morgan et al. Dec 2006 B2
7191845 Loar Mar 2007 B2
7240905 Stahl Jul 2007 B1
7251918 Reif et al. Aug 2007 B2
7284355 Becker Oct 2007 B2
7302776 Duncan et al. Dec 2007 B2
7398856 Foster et al. Jul 2008 B2
7413024 Simontacchi et al. Aug 2008 B1
7441565 Imamura et al. Oct 2008 B2
7487591 Harkins et al. Feb 2009 B2
7497056 Surowiecki Mar 2009 B2
7506478 Bobenhausen Mar 2009 B2
7513082 Johnson Apr 2009 B2
7540118 Jensen Jun 2009 B2
7594331 Andrews et al. Sep 2009 B2
7603823 Cann Oct 2009 B2
7610725 Willert Nov 2009 B2
7617643 Pilz et al. Nov 2009 B2
7681365 Klein Mar 2010 B2
7685792 Stahl, Sr. et al. Mar 2010 B2
7716891 Radford May 2010 B2
7735295 Surowiecki Jun 2010 B2
7752817 Pilz et al. Jul 2010 B2
7770348 Tollenaar Aug 2010 B2
7775006 Giannos Aug 2010 B2
7776170 Yu et al. Aug 2010 B2
7797893 Stahl, Sr. et al. Sep 2010 B2
7810295 Thompson Oct 2010 B2
7814718 Klein Oct 2010 B2
7827738 Abrams et al. Nov 2010 B2
7836652 Futterman Nov 2010 B2
7866108 Klein Jan 2011 B2
7870698 Tonyan et al. Jan 2011 B2
7921537 Rodlin Apr 2011 B2
7921614 Fortin et al. Apr 2011 B2
7941981 Shaw May 2011 B2
7950198 Pilz et al. May 2011 B2
7966778 Klein Jun 2011 B2
7984592 Jiras Jul 2011 B1
8029345 Messmer et al. Oct 2011 B2
8056293 Klein Nov 2011 B2
8061099 Andrews Nov 2011 B2
8062108 Carlson et al. Nov 2011 B2
8069625 Harkins et al. Dec 2011 B2
8074412 Gogan et al. Dec 2011 B1
8074416 Andrews Dec 2011 B2
8079188 Swartz et al. Dec 2011 B2
8087205 Pilz et al. Jan 2012 B2
8096084 Studebaker et al. Jan 2012 B2
8100164 Goodman et al. Jan 2012 B2
8132376 Pilz et al. Mar 2012 B2
8136314 Klein Mar 2012 B2
8151526 Klein Apr 2012 B2
8181404 Klein May 2012 B2
8225581 Strickland et al. Jul 2012 B2
8281552 Pilz et al. Oct 2012 B2
8286397 Shaw Oct 2012 B2
8318304 Valenziano Nov 2012 B2
8322094 Pilz et al. Dec 2012 B2
8353139 Pilz Jan 2013 B2
8375666 Stahl, Jr. et al. Feb 2013 B2
8389107 Riebel et al. Mar 2013 B2
8413394 Pilz et al. Apr 2013 B2
8468759 Klein Jun 2013 B2
8495844 Johnson, Sr. Jul 2013 B1
8499512 Pilz et al. Aug 2013 B2
8539732 Leahy Sep 2013 B2
8541084 Deiss et al. Sep 2013 B2
8544226 Rubel Oct 2013 B2
8555566 Pilz et al. Oct 2013 B2
8578672 Mattox et al. Nov 2013 B2
8584415 Stahl, Jr. et al. Nov 2013 B2
8590231 Pilz Nov 2013 B2
8595999 Pilz et al. Dec 2013 B1
8596019 Aitken Dec 2013 B2
8601760 Hilburn, Jr. Dec 2013 B2
8607519 Hilburn Dec 2013 B2
8640415 Pilz et al. Feb 2014 B2
8646235 Hilburn, Jr. Feb 2014 B2
8671632 Pilz et al. Mar 2014 B2
8728608 Maisch May 2014 B2
8782977 Burgess Jul 2014 B2
8793947 Pilz et al. Aug 2014 B2
8938922 Pilz et al. Jan 2015 B2
8950132 Collins et al. Feb 2015 B2
8955275 Stahl, Jr. Feb 2015 B2
8973319 Pilz et al. Mar 2015 B2
9045899 Pilz et al. Jun 2015 B2
9085907 Rutherford Jul 2015 B2
9127454 Pilz et al. Sep 2015 B2
9151042 Simon et al. Oct 2015 B2
9163444 Fontijn et al. Oct 2015 B1
9206596 Robinson Dec 2015 B1
9284730 Klein Mar 2016 B2
9290932 Pilz et al. Mar 2016 B2
9290934 Pilz et al. Mar 2016 B2
9316133 Schnitta Apr 2016 B2
9371644 Pilz et al. Jun 2016 B2
9382709 Collins Jul 2016 B2
9458628 Pilz et al. Oct 2016 B2
9481998 Pilz et al. Nov 2016 B2
9506246 Joseph et al. Nov 2016 B2
9512614 Klein et al. Dec 2016 B2
9523193 Pilz Dec 2016 B2
9551148 Pilz Jan 2017 B2
9616259 Pilz et al. Apr 2017 B2
9637914 Pilz et al. May 2017 B2
9683364 Pilz et al. Jun 2017 B2
9719253 Stahl, Jr. et al. Aug 2017 B2
9739052 Pilz et al. Aug 2017 B2
9739054 Pilz et al. Aug 2017 B2
9752318 Pilz Sep 2017 B2
9879421 Pilz Jan 2018 B2
9883607 Bernard Jan 2018 B2
9885178 Barnes et al. Feb 2018 B1
9909298 Pilz Mar 2018 B2
9931527 Pilz et al. Apr 2018 B2
9995039 Pilz et al. Jun 2018 B2
10000923 Pilz Jun 2018 B2
10010805 Maxam Jul 2018 B2
10011983 Pilz et al. Jul 2018 B2
10077550 Pilz Sep 2018 B2
10166418 Förg et al. Jan 2019 B2
10174499 Tinianov et al. Jan 2019 B1
10184246 Pilz et al. Jan 2019 B2
10203035 Robinson Feb 2019 B1
10214901 Pilz et al. Feb 2019 B2
10227775 Pilz et al. Mar 2019 B2
10246871 Pilz Apr 2019 B2
10323409 Robinson Jun 2019 B1
10323411 Ackerman et al. Jun 2019 B2
10406389 Pilz et al. Sep 2019 B2
10472819 Klein et al. Nov 2019 B2
10480654 Robinson Nov 2019 B2
10494818 Maziarz Dec 2019 B2
10563399 Pilz et al. Feb 2020 B2
10619347 Pilz et al. Apr 2020 B2
10626598 Klein Apr 2020 B2
10669710 Förg Jun 2020 B2
10689842 Pilz Jun 2020 B2
10731338 Zemler et al. Aug 2020 B1
10753084 Pilz et al. Aug 2020 B2
10900223 Pilz Jan 2021 B2
10914065 Pilz Feb 2021 B2
10920416 Klein et al. Feb 2021 B2
10954670 Pilz Mar 2021 B2
11041306 Pilz et al. Jun 2021 B2
11060283 Pilz et al. Jul 2021 B2
11111666 Pilz Sep 2021 B2
11118346 Klein et al. Sep 2021 B2
11141613 Pilz et al. Oct 2021 B2
11149432 Gatland Oct 2021 B2
11162259 Pilz Nov 2021 B2
11230839 Klein et al. Jan 2022 B2
11268274 Pilz Mar 2022 B2
11299884 Stahl, Jr. et al. Apr 2022 B2
11313121 Quirijns et al. Apr 2022 B2
11401711 Klein Aug 2022 B2
11421417 Pilz et al. Aug 2022 B2
11466449 Pilz et al. Oct 2022 B2
11486150 Stahl Nov 2022 B2
11512464 Klein Nov 2022 B2
11560712 Pilz et al. Jan 2023 B2
11674304 Landreth et al. Jun 2023 B2
11697937 Campbell Jul 2023 B2
20020029535 Loper Mar 2002 A1
20020095908 Kiser Jul 2002 A1
20020160149 Garofalo Oct 2002 A1
20020170249 Yulkowski Nov 2002 A1
20030079425 Morgan et al. May 2003 A1
20030089062 Morgan et al. May 2003 A1
20030196401 Surowiecki Oct 2003 A1
20030213211 Morgan et al. Nov 2003 A1
20040010998 Turco Jan 2004 A1
20040016191 Whitty Jan 2004 A1
20040045234 Morgan et al. Mar 2004 A1
20040139684 Menendez Jul 2004 A1
20040149390 Monden et al. Aug 2004 A1
20040157012 Miller et al. Aug 2004 A1
20040211150 Bobenhausen Oct 2004 A1
20050031843 Robinson et al. Feb 2005 A1
20050183361 Frezza Aug 2005 A1
20050246973 Jensen Nov 2005 A1
20060032163 Korn Feb 2006 A1
20060096200 Daudet May 2006 A1
20060123723 Weir et al. Jun 2006 A1
20060137293 Klein Jun 2006 A1
20060213138 Milani et al. Sep 2006 A1
20060261223 Orndorff, II et al. Nov 2006 A1
20060277841 Majusiak Dec 2006 A1
20070056245 Edmondson Mar 2007 A1
20070068101 Weir et al. Mar 2007 A1
20070125027 Klein Jun 2007 A1
20070130873 Fisher Jun 2007 A1
20070193202 Rice Aug 2007 A1
20070261343 Stahl, Sr. Nov 2007 A1
20080053013 Tollenaar Mar 2008 A1
20080087366 Yu et al. Apr 2008 A1
20080134589 Abrams et al. Jun 2008 A1
20080172967 Hilburn Jul 2008 A1
20080196337 Surowiecki Aug 2008 A1
20080250738 Howchin Oct 2008 A1
20090090074 Klein Apr 2009 A1
20090094912 Klein Apr 2009 A1
20090107064 Bowman Apr 2009 A1
20090197060 Cho Aug 2009 A1
20090223159 Colon Sep 2009 A1
20090282760 Sampson et al. Nov 2009 A1
20100199583 Behrens et al. Aug 2010 A1
20100266781 Kusinski et al. Oct 2010 A1
20110011019 Stahl, Jr. et al. Jan 2011 A1
20110041415 Esposito Feb 2011 A1
20110056163 Kure Mar 2011 A1
20110067328 Naccarato et al. Mar 2011 A1
20110099928 Klein et al. May 2011 A1
20110113709 Pilz et al. May 2011 A1
20110123801 Valenciano May 2011 A1
20110146180 Klein Jun 2011 A1
20110167742 Klein Jul 2011 A1
20110185656 Klein Aug 2011 A1
20110214371 Klein Sep 2011 A1
20110247281 Pilz et al. Oct 2011 A1
20110262720 Riebel et al. Oct 2011 A1
20110274886 Flennert Nov 2011 A1
20110302857 McClellan et al. Dec 2011 A1
20120023846 Mattox et al. Feb 2012 A1
20120180414 Burgess Jul 2012 A1
20120247038 Black Oct 2012 A1
20120266550 Naccarato et al. Oct 2012 A1
20120297710 Klein Nov 2012 A1
20130031856 Pilz et al. Feb 2013 A1
20130118102 Pilz May 2013 A1
20130118764 Porter May 2013 A1
20130133844 Smart et al. May 2013 A1
20130205694 Stahl, Jr. Aug 2013 A1
20140219719 Hensley et al. Aug 2014 A1
20140260017 Noble, III Sep 2014 A1
20140345886 Yano et al. Nov 2014 A1
20150086793 Kreysler et al. Mar 2015 A1
20150135622 Muenzenberger et al. May 2015 A1
20150135631 Förg May 2015 A1
20150275506 Klein et al. Oct 2015 A1
20150275507 Klein et al. Oct 2015 A1
20150275510 Klein et al. Oct 2015 A1
20150354210 Stahl, Jr. et al. Dec 2015 A1
20150368898 Stahl, Jr. et al. Dec 2015 A1
20160016381 Celis Marin Jan 2016 A1
20160017598 Klein et al. Jan 2016 A1
20160017599 Klein et al. Jan 2016 A1
20160201893 Ksiezppolski Jul 2016 A1
20160265219 Pilz Sep 2016 A1
20160296775 Pilz et al. Oct 2016 A1
20160348357 Smith et al. Dec 2016 A1
20170016227 Klein Jan 2017 A1
20170175386 Pilz Jun 2017 A1
20170234004 Pilz Aug 2017 A1
20170234010 Klein Aug 2017 A1
20170260741 Ackerman et al. Sep 2017 A1
20170306615 Klein et al. Oct 2017 A1
20180010333 Förg Jan 2018 A1
20180044913 Klein et al. Feb 2018 A1
20180072922 Canale Mar 2018 A1
20180171624 Klein et al. Jun 2018 A1
20180171646 Stahl et al. Jun 2018 A1
20180195282 Pilz Jul 2018 A1
20180291619 Ackerman et al. Oct 2018 A1
20190284799 Förg Sep 2019 A1
20190323234 Watanabe et al. Oct 2019 A1
20190323347 Hensley et al. Oct 2019 A1
20200199867 Ackerman Jun 2020 A1
20200308829 Hunsaker Oct 2020 A1
20200340239 Chang Oct 2020 A1
20200340240 Pilz Oct 2020 A1
20200362551 Klein et al. Nov 2020 A1
20210010257 Klein et al. Jan 2021 A1
20210017761 Klein et al. Jan 2021 A1
20210040731 Pilz Feb 2021 A1
20210062502 Archer et al. Mar 2021 A1
20210101319 Klein et al. Apr 2021 A1
20210164222 Pilz Jun 2021 A1
20210189721 Klein et al. Jun 2021 A1
20210285208 Pilz Sep 2021 A1
20210396004 Pilz Dec 2021 A1
20220010553 Pilz et al. Jan 2022 A1
20220023684 Pilz et al. Jan 2022 A1
20220042303 Pilz Feb 2022 A1
20220056686 Pilz Feb 2022 A1
20220098856 Pilz Mar 2022 A1
20220106785 Klein Apr 2022 A1
20220154456 Griffith et al. May 2022 A1
20220162851 Pilz May 2022 A1
20220268017 Pilz Aug 2022 A1
20220349177 Pilz Nov 2022 A1
20230114420 Pilz et al. Apr 2023 A1
20230115315 Pilz et al. Apr 2023 A1
20230203807 Pilz et al. Jun 2023 A1
20230220665 Pilz et al. Jul 2023 A1
Foreign Referenced Citations (29)
Number Date Country
2234347 Oct 1999 CA
2498537 Aug 2006 CA
2711659 Feb 2012 CA
2803439 Mar 2017 CA
2645807 Mar 1978 DE
60213279 Jul 2007 DE
0 335 347 Oct 1989 EP
0 346 126 Dec 1989 EP
0509701 Oct 1992 EP
3 196 376 Jul 2017 EP
3 348 729 Jul 2018 EP
3348729 Jul 2018 EP
3 556 957 Oct 2019 EP
2 159 051 Nov 1985 GB
2 239 213 Jun 1991 GB
2 411 212 Aug 2005 GB
2 424 658 Oct 2006 GB
2 494 721 Mar 2013 GB
H06-042090 Feb 1994 JP
H06-146433 May 1994 JP
H06-220934 Aug 1994 JP
H07-004620 Jan 1995 JP
100664665 Jan 2007 KR
WO 2003038206 May 2003 WO
WO 2004071584 Aug 2004 WO
WO 2007103331 Sep 2007 WO
WO 2013113734 Aug 2013 WO
WO 2017129398 Jan 2017 WO
WO 2019108295 Jun 2019 WO
Non-Patent Literature Citations (17)
Entry
Patent Translate of Description EP 3348729 A1 from espacenet.com retriveable at https://translationportal.epo.org/emtp/translate?ACTION=description-retrieval&COUNTRY=EP&ENGINE=google&FORMAT=docdb&KIND=A1&LOCALE=en_EP&NUMBER=3348729&OPS=ops.epo.org%2F3.2&SRCLANG=de&apikey=TSMqTfrVAvNtryGl8Qlfbozj8DnAGlq.
U.S. Appl. No. 17/303,173, filed May 21, 2021, Pilz et al.
U.S. Appl. No. 17/453,158, filed Nov. 1, 2021, Pilz.
BlazeFrame 2009 catalog of products, available at least as of Mar. 4, 2010 from www.blazeframe.com, in 20 pages.
Catalog page from Stockton Products, printed from www.stocktonproducts.com, on Dec. 16, 2007, showing #5 Drip, in 1 page.
ClarkDietrich Building Systems, Product Submittal Sheet, (FTSC) Flat Trail Vertical Slide Clip. CD-FTSC11 Jul. 2011. 1 page.
Double TrackTM information sheets by Dietrich Metal Framing, in 2 pages; accessible on Internet Wayback Machine on Jul. 8, 2006.
FireStikTM by CEMCO Brochure, published on www.firestik.us, in 18 pages; accessible on Internet Wayback Machine on Aug. 13, 2007.
Information Disclosure Statement letter; U.S. Appl. No. 12/196,115, dated Aug. 4, 2011.
“Intumescent Expansion Joint Seals”, Astroflame; http://www.astroflame.com/intumescent_expansion_joint_seals; Jul. 2011; 4 pages.
James A. Klein's Answer, Affirmative Defenses and Counterclaims to Third Amended Complaint; U.S. District Court, Central District of California; Case No. 2:12-cv-10791-DDP-MRWx; Filed Sep. 17, 2014; pp. 1-37.
Letter from Thomas E. Loop; counsel for defendant; Jun. 26, 2015.
Expert Report of James William Jones and exhibits; Case No. CV12-10791 DDP (MRWx); May 18, 2015.
Letter from Ann G. Schoen of Frost Brown Todd, LLC; Jun. 24, 2015.
“System No. HW-D-0607”, May 6, 2010, Metacaulk, www.rectorseal.com, www.metacault.com; 2008 Underwriters Laboratories Inc.; 2 pages.
Trim-Tex, Inc., TRIM-TEX Wall Mounted Deflection Bead Installation Instructions, 2 pages. [Undated. Applicant requests that the Examiner review and consider the reference as prior art for the purpose of examination.].
“Wall Mounted Deflection Bead,” Trim-Tex Drywall Products; Oct. 9, 2016; 3 pages.
Related Publications (1)
Number Date Country
20220259852 A1 Aug 2022 US
Provisional Applications (1)
Number Date Country
62813472 Mar 2019 US
Continuations (1)
Number Date Country
Parent 16809401 Mar 2020 US
Child 17653771 US