The present invention relates generally to electrical terminals and more specifically to tab receptacle terminals that are attached to electric cables for use in electrical connectors.
Tab receptacle terminals having a one-piece design are described in Mobley, et al., U.S. Pat. No. 4,713,026 and Feeny, et al., U.S. Pat. No. 5,800,220. A problem with the known one-piece designs is that materials that have good electrical properties typically are not suitable for high temperature applications. High temperatures cause contact springs within the terminal to relax over time, thereby reducing retention force between the tab receptacle terminal and a mating member such as a male terminal blade or tab. This causes the current carrying capacity of the mater terminals to decrease or leads to unintended separation of the tab receptacle terminal from the mating member.
It is already known to provide electrical female terminals of two-piece construction comprising a terminal member and an inner spring contact member. In a known female terminal, the terminal member has a shield portion on one end and crimp wings at the other end to attach the terminal member to the end of a cable. The shield portion surrounds an inner spring contact member.
A problem associated with this known two-piece female terminal is that electrical current must pass through both the terminal member and the inner spring contact member. As a result, both members must be electrical conductors. In addition, both members are welded together to provide a good electrical interface. Consequently, the electrical mechanical, and weldability properties must all be considered when selecting materials for the terminal member and the inner spring contact member. This limits the materials available for selection and adds cost. Consequently, materials chosen for each member become compromises that do not ideally satisfy all of the requirements. Furthermore, an additional electrical interface is created within the terminal because the electrical current must flow between the inner spring contact member and the terminal member.
The present invention provides advantages and alternatives over the prior art with a two-piece female terminal comprising an outer body and an inner body with each piece constructed for the particular application of the piece. Importantly, the terminal is also capable of being used in high temperature environments.
The inner body is made of an electrically conductive material. A receptacle portion of the inner body includes a contact element which provides electrical contact to a mating terminal. The inner body extends from the receptacle portion to a conductor contacting portion enabling current to flow from the mating terminal to an attached electrical conductor via the inner body. Since the same piece provides the electrical contact for the mating terminal as well as the electrical contact to an attached conductor the electrical interfaces of the terminal are minimized.
The outer body includes a forward shield portion and a rearward conductor attaching portion. The inner body includes a forward receptacle portion and a rearward conductor contacting portion. The shield portion of the outer body surrounds the receptacle portion of the inner body. In a preferred embodiment, the outer body includes back-up springs that support the contact element of the inner body. The conductor attaching portion includes features for attaching the terminal to an electrical conductor such as a cable.
The terminal is also modular. Inner bodies made from different conductive materials can be interchanged with a particular outer body design without affecting crimp strength and other crimp properties.
These and other features and advantages of the present invention will become apparent from the following brief description of the drawings, detailed description, and appended drawings.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring to
The outer body 12 is stamped and formed from a metal sheet. The metal sheet is preferably stainless steel. The inner body 14 is stamped and formed from a sheet of an electrically conductive material such as brass. Other materials known to those skilled in the art may be used. Since current flows from a mating terminal through the inner body 14 to an attached conductor it is not necessary that the outer body 12 be comprised of an electrically conducting material. Alternatively, the outer body 12 can be made from an electrically conductive material.
The outer body 12 includes a forward, generally box shaped, shield portion 16 having a substantially rectangular cross-section, a rearward conductor attaching portion 18 and an intermediate outer body neck 20 located therebetween. The shield portion 16 includes a generally planar bottom wall 22, first and second spaced side walls 24, 26 extending vertically from the bottom wall 22, and a generally planar top wall 28 extending laterally from the first side 24. The bottom wall 22, the first and second spaced side walls 24, 26, and the top wall 28 define an opening 29 for receiving a mating member (not shown). The top wall 28 includes a first primary lock tab 30 and a first back-up spring 32. The first primary lock tab 30 is formed from the top wall 28 and extends outwardly. The first back-up spring 32 is constituted as individual deflectable first spring fingers 32a, 32b, 32c formed from the top wall 28. Each of the first spring fingers 32a, 32b, 32c extend longitudinally rearwardly and are bent inwardly toward plane P. The bottom wall 22 includes a second primary lock tab 34 and a second back-up spring 36. The second primary lock tab 34 is formed from the bottom wall 22 and extends outwardly. The second primary lock tab 34 opposes the first primary lock tab 30 across plane P. The second back-up spring 36 is constituted as individual deflectable second spring fingers (not shown) formed from the bottom wall 22. The second spring fingers (not shown) are similar to the first spring fingers 32a, 32b, 32c. Each of the second spring fingers (not shown) extend longitudinally rearwardly and are bent inwardly toward plane P. The intermediate outer body neck 20 extends rearwardly from the bottom wall 22 transitioning from a planar surface as it extends from the bottom wall 22 to an arcuate surface. The intermediate outer body neck 20 has a first retaining aperture 38. The conductor attaching portion 18 extends rearwardly from the intermediate neck 20. The conductor attaching portion 18 includes a rearward extending bottom channel portion 40, a pair of core crimp wings 42, an enlarged diameter portion 44, and a pair of insulation crimp wings 46.
The inner body 14 comprises a forward receptacle portion 60, a rearward conductor contacting portion 62 and an intermediate inner body neck 64 located therebetween. The intermediate inner body neck 64 and conductor contacting portion 62 extend rearwardly as a tail from the forward receptacle portion 60. The receptacle portion 60 of the inner body 14 is located substantially inside the shield portion 16 of the outer body 12. The intermediate inner body neck 64 extends rearwardly from a second collar 66 of the receptacle portion 60 and is disposed along the intermediate outer body neck 20. The conductor contacting portion 62 of the inner body 14 is disposed along the bottom channel portion 40 of the outer body 12. The conductor contacting portion 62 is in the form of a channel 62a extending from the intermediate inner body neck 64 into a U-shaped region formed by the bottom channel portion 40 and core crimp wings 42. The conductor contacting portion 62 has an arcuate shape with respect to axis A. The conductor contacting portion 62 contacts the conductive core of an electrical conductor cable (not shown) when the crimp wings 42, 46 are crimped onto the core and insulation of the cable (not shown). The conductor contacting portion 62 has an inwardly curved, knurled upper surface 62b.
The receptacle portion 60 of the inner body 14 is adapted to fit within the shield portion 16 of the outer body 12. The receptacle portion 60 includes the second collar 66, a first collar 68, a lower contact element 70, first and second spaced sides 72, 74, and an upper contact element 76. The second collar 66 and first collar 68 each have a substantially rectangular shape with rounded corners. The first collar 68 defines an opening 77 for receiving a mating member (not shown). The upper contact element 76 of the receptacle portion 60 includes a first primary spring element 78 constituted as a resilient lamella strip with the individual upper contact arms or lamella 78a, 78b, 78c extending longitudinally and being bent inwardly defining respective inward facing contact surfaces 79a, 79b, 79c. The lower contact element 70 of the receptacle portion 60 includes a second primary spring element 80 constituted as a resilient lamella strip with the individual lower contact arms or lamellae 80a, 80b, 80c extending longitudinally and being bent inwardly defining respective inward facing contact surfaces 81a, 81b, 81c. The first and second sides 72, 74 are each constituted as a respective resilient contact arm or lamella 72a, 74a extending longitudinally and being bent inwardly defining respective inward facing contact surfaces 73a, 75a. The individual upper contact lamellae 78a, 78b, 78c are substantially opposed to the individual lower contact lamellae 80a, 80b, 80c across the plane P. Each of the lamella strips 72a, 74a, 78a, 78b, 78c, 80a, 80b, 80c have a substantially rectangular cross-section with a narrowed portion 82 at each end.
The first back-up spring 32 is disposed outside the upper contact element 76 with the respect to plane P. Each of the individual first spring fingers 32a, 32b, 32c is bent inwardly toward a corresponding upper contact lamellae 78a, 78b, 78c. Each of the individual first spring fingers 32a, 32b, 32c abutting and supporting corresponding upper contact lamellae 78a, 78b, 78c at an outward facing first contact surface 84. The first back-up spring 32 is biased to urge the upper contact element 76 of the inner body 14 inwardly. This support helps to enable the upper contact element 76 to maintain a normal face on a mating terminal (not shown). Alternatively, there can be a gap (not shown) between the individual first spring fingers 32a, 32b, 32c and the corresponding upper contact lamellae 78a, 78b, 78c. Under this alternative, if the first primary spring element 78 flattens out or relaxes over time, the gap will be eliminated and the corresponding first back-up spring 32 will abut against and support the first primary spring element 78 at the outward facing first contact surface 84 where each of the individual first spring fingers 32a, 32b, 32c contacts the respective upper contact lamellae 78a, 78b, 78c.
Similarly, the second back-up spring 36 is disposed outside the lower contact element 70 with respect to plane P. Each of the individual second spring fingers 36a, 36b, 36c is bent inwardly toward a corresponding lower contact lamellae 80a, 80b, 80c. Each of the individual second spring fingers 36a, 36b, 36c abutting and supporting the corresponding lower contact lamellae 80a, 80b, 80c at an outward facing second contact surface 86. The second back-up spring 36 is biased to urge the lower contact element 70 of the inner body 14 inwardly. This support helps to enable the lower contact element 70 to maintain a normal face on a mating terminal (not shown). Alternatively, there can be a gap (not shown) between the individual second spring fingers 36a, 36b, 36c and the corresponding lower contact lamellae 80a, 80b, 80c. Under this alternative, if the second primary spring element 80 flattens out or relaxes over time, the gap will be eliminated and the corresponding second back-up spring 36 will abut against and support the second primary spring element 80 at the outward facing second contact surface 86 where each of the individual second spring fingers 36a, 36b, 362c contacts the respective lower contact lamellae 80a, 80b, 80c.
The intermediate inner body neck 64 has a first retaining tab 88. The first retaining tab 88 is formed from the intermediate inner body neck 64 and extends frontwardly and outwardly. The first retaining tab 88 extends into the first retaining aperture 38 affixing the inner body 14 to the outer body 12. A bottom portion 90 of the second collar 66 has a second retaining tab 92. The second retaining tab 92 is formed from the bottom portion 90 of the second collar 66 and extends rearwardly and outwardly. The second retaining tab 92 extends into a second retaining aperture 94 formed near the second primary lock tab 34 further affixing the inner body 14 to the outer body 12. Of course, the inner body 14 could also be affixed to the outer body 12 by having a retaining tab (not shown) on the outer body 12 and an aperture (not shown) for receiving the retaining tab (not shown) on the inner body 14. Other means of affixing the inner body 14 to the outer body 12 may also occur to those skilled in the art such as by utilizing a press fit between the inner body 14 and the outer body 12. In addition, after the female terminal 10 is crimped to the wire (not shown), the crimped wire (not shown) further holds the inner body 14 to the outer body 12.
The above described features enable the shield portion 16 of the outer body 12 to be substantially symmetrical with respect to plane P. Thus, the female terminal 10 can be inserted into a connector (not shown) in two opposing orientations.
The above described features also enable a modular terminal in the sense that inner bodies made from different conductive materials can each be used with a particular outer body design without affecting crimp strength and other crimp properties. In addition, outer bodies made from different materials can each be used with a particular inner body design.
This invention has been described with reference to a preferred embodiment and modifications thereto. Further modifications and alternations may occur to others upon reading and understanding the specification. It is intended to include all such modifications and alterations insofar as they come within the scope of the invention. For example, an indexing feature familiar to those skilled in the art such as an indexing rib can be incorporated in the terminal of the present invention to enable the terminal to be inserted into a connector in only one orientation. Obviously, a tang familiar to those skilled in the art such as a latching tang can also be incorporated in the terminal of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4713026 | Mobley et al. | Dec 1987 | A |
5474479 | Bennett et al. | Dec 1995 | A |
5529518 | Wood | Jun 1996 | A |
5533914 | Sawada | Jul 1996 | A |
5800220 | Feeny et al. | Sep 1998 | A |
20040116002 | Rozet et al. | Jun 2004 | A1 |