1. Field of the Invention
This application is directed toward a two-piece track system for use in building construction, particularly for use in the interior and/or exterior wall of a building.
2. Description of the Related Art
Two-piece track systems for use in building construction are generally well known, as are two-piece track systems for use in the exterior and/or interior wall of a building that allow for independent environmental movement of the tracks relative to one another. Two-piece track systems generally resemble both an outer U-shaped (or some other similar shaped) elongated tube, or track, and an inner U-shaped (or some other similar shaped) elongated tube, or track. The inner track is designed to receive or cover the ends of wall studs, and the outer track is designed to receive the inner track.
In two-piece track systems, independent movement of the tracks is desirable. The inner track is generally not confined in all directions, and thus is able to move independently from the outer track. Often times in use, the inner track is able to generally slide alongside the outer track in a horizontal or lateral direction relative to the outer track. In those areas of the world where earthquakes are common, this lateral or horizontal movement is important. If the inner track were not allowed to move freely in a generally lateral or horizontal direction, the stability of the wall and the building might be compromised.
In building construction it is not uncommon to have pieces of sheathing, or façade, attached to the outside of the building. These pieces of sheathing generally extend vertically alongside and down the exterior portion of the tracks and wall studs. The pieces of sheathing are attached to the tracks and/or wall studs by some connection means such as a screw or screws. In current two-piece track systems, the outer track's greatest width is larger than the inner track's greatest width. This creates an uneven outer surface for attachment of the sheathing. As a result, often sheathing elements flare out at their ends to accommodate for the uneven surface created by the different track widths.
Also, it is often difficult to keep the inner track from pulling or slipping away relative to the outer track. In current two-piece track systems, screws are used to hold the outer and inner tracks in place during construction. If these screws are not removed after the wall is framed, the inner track will not be able to move as is desired.
The present invention is directed toward a system that comprises two nested tracks that improve over the prior art. The system comprises an inner track configured to receive a plurality of wall studs therewithin, and an outer track configured to receives the inner track within the outer track. The outer track is configured so that its greatest width is equal to or less than the greatest width of the inner track, thus presenting a general flush surface for attachment of sheathing to the track when the system is used in an exterior wall. In some embodiments, the track flanges may comprises a plurality of angled surfaces to permit a mating nesting arrangement that has an added benefit of preventing separation of the two tracks once nested. The system may further comprise a strap or series of engaging surfaces on the inner and outer tracks that generally restrain the inner track relative to the outer track in addition and/or in lieu of angled flange surfaces.
These and other features, aspects and advantages of the various devices, systems and methods presented herein are described with reference to drawings of certain embodiments, which are intended to illustrate, but not to limit, such devices, systems, and methods. It is to be understood that the attached drawings are for the purpose of illustrating concepts of the embodiments discussed herein and may not be to scale.
Referring to
It is desirable that the greatest width of the outer track 12 be no greater than the greatest width of the inner track 14; i.e., equal to or less than the greatest width of the inner track 14. In the embodiments shown by example in
Although the present invention is applicable to both interior and exterior walls, in the context of an exterior wall specifically, it is contemplated that outer sheathing would be attached to the track assembly 10, with an upper sheathing board 30 and a lower sheathing board 32 positioned below it. By configuring the outer and inner tracks 12, 14 as described herein, the two-piece track system 10 may present a substantially flush surface profile alongside sheathing board 30 and 32, which minimizes flaring of the sheathing boards and creates a desirable building surface. Where the width of the outer track is meaningfully less than the width of the inner track, it is still possible to utilize and attach flat sheathing elements to maintain a flush building profile, although a small gap may exist (not shown) between the flange 24b and upper sheathing board 30 undetectable from outside the building.
When applied to a building, the track assembly 10 is secured to the ceiling surface 16 by securing the web 22 of outer track 12 to the ceiling surface by way of conventional fastening means (not shown). The inner track 14 may be slipped into the outer track either by way of a snap fit or other application. When shipped as a combined assembly, each track web 22, 26 comprises aligned holes and/or slots for permitting a fastener to be directed through the inner track web 26 and to engage the web 22 of the outer track 12 to the ceiling surface.
In current two-piece track systems, it is often necessary to use screws or similar devices to hold the two tracks together during installation or building construction. If the screws are not eventually pulled out after the wall is framed, the screws that were installed will prevent the inner track from being able to move independently from the outer track. One embodiment of the present invention overcomes this deficiency. Referring to
It is contemplated that the inner and outer tracks may be configured in one of a large number of mating configurations that permit relative lateral movement of the inner track within the outer track and yet preserve the assembly in tact. Examples of other configurations are shown in
Referring to
This application is a continuation from U.S. patent application Ser. No. 12/040,658, filed Feb. 29, 2008, which claims benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/954,029, filed Aug. 6, 2007, the entireties of which are incorporated by reference herein. Also incorporated herein in their entireties by reference are U.S. application Ser. No. 12/013,361 entitled Fire Rated Wall Construction Product, filed Jan. 11, 2008, and U.S. application Ser. No. 12/039,685 entitled Exterior Wall Construction Product, filed Feb. 28, 2008.
Number | Name | Date | Kind |
---|---|---|---|
2218426 | Hulbert, Jr. | Oct 1940 | A |
2683927 | Maronek | Jul 1954 | A |
2733786 | Drake | Feb 1956 | A |
3129792 | Gwynne | Apr 1964 | A |
3324615 | Zinn | Jun 1967 | A |
3397495 | Thompson | Aug 1968 | A |
3481090 | Lizee | Dec 1969 | A |
3537219 | Navarre | Nov 1970 | A |
3566559 | Dickson | Mar 1971 | A |
3744199 | Navarre | Jul 1973 | A |
3839839 | Tillisch et al. | Oct 1974 | A |
3935681 | Voiturier et al. | Feb 1976 | A |
3955330 | Wendt | May 1976 | A |
3964214 | Wendt | Jun 1976 | A |
4011704 | O'Konski | Mar 1977 | A |
4103463 | Dixon | Aug 1978 | A |
4130972 | Varlonga | Dec 1978 | A |
4144335 | Edwards | Mar 1979 | A |
4152878 | Balinski | May 1979 | A |
4164107 | Kraemling et al. | Aug 1979 | A |
4283892 | Brown | Aug 1981 | A |
4318253 | Wedel | Mar 1982 | A |
4329820 | Wendt | May 1982 | A |
4437274 | Slocum et al. | Mar 1984 | A |
4649089 | Thwaites | Mar 1987 | A |
4672785 | Salvo | Jun 1987 | A |
4709517 | Mitchell et al. | Dec 1987 | A |
4723385 | Kallstrom | Feb 1988 | A |
4787767 | Wendt | Nov 1988 | A |
4825610 | Gasteiger | May 1989 | A |
4850385 | Harbeke | Jul 1989 | A |
5010702 | Daw et al. | Apr 1991 | A |
5103589 | Crawford | Apr 1992 | A |
5125203 | Daw | Jun 1992 | A |
5127203 | Paquette | Jul 1992 | A |
5127760 | Brady | Jul 1992 | A |
5146723 | Greenwood et al. | Sep 1992 | A |
5155957 | Robertson et al. | Oct 1992 | A |
5157883 | Meyer | Oct 1992 | A |
5222335 | Petrecca | Jun 1993 | A |
5244709 | Vanderstukken | Sep 1993 | A |
5285615 | Gilmour | Feb 1994 | A |
5325651 | Meyer et al. | Jul 1994 | A |
5367850 | Nicholas | Nov 1994 | A |
5374036 | Rogers et al. | Dec 1994 | A |
5390465 | Rajecki | Feb 1995 | A |
5394665 | Johnson | Mar 1995 | A |
5412919 | Pellock et al. | May 1995 | A |
5452551 | Charland et al. | Sep 1995 | A |
5456050 | Ward | Oct 1995 | A |
5471805 | Becker | Dec 1995 | A |
5592796 | Landers | Jan 1997 | A |
5644877 | Wood | Jul 1997 | A |
5687538 | Frobosilo et al. | Nov 1997 | A |
5689922 | Daudet | Nov 1997 | A |
5755066 | Becker | May 1998 | A |
5787651 | Horn et al. | Aug 1998 | A |
5797233 | Hascall | Aug 1998 | A |
5806261 | Huebner et al. | Sep 1998 | A |
5913788 | Herren | Jun 1999 | A |
5921041 | Egri, II | Jul 1999 | A |
5927041 | Sedlmeier et al. | Jul 1999 | A |
5930963 | Nichols | Aug 1999 | A |
5950385 | Herren | Sep 1999 | A |
6058668 | Herren | May 2000 | A |
6176053 | St. Germain | Jan 2001 | B1 |
6189277 | Boscamp | Feb 2001 | B1 |
6213679 | Frobosilo et al. | Apr 2001 | B1 |
6216404 | Vellrath | Apr 2001 | B1 |
6233888 | Wu | May 2001 | B1 |
6305133 | Cornwall | Oct 2001 | B1 |
6374558 | Surowiecki | Apr 2002 | B1 |
6430881 | Daudet et al. | Aug 2002 | B1 |
6647691 | Becker et al. | Nov 2003 | B2 |
6732481 | Stahl, Sr. | May 2004 | B2 |
6783345 | Morgan et al. | Aug 2004 | B2 |
6799404 | Spransy | Oct 2004 | B2 |
6843035 | Glynn | Jan 2005 | B1 |
6854237 | Surowiecki | Feb 2005 | B2 |
6871470 | Stover | Mar 2005 | B1 |
7152385 | Morgan et al. | Dec 2006 | B2 |
7191845 | Loar | Mar 2007 | B2 |
7240905 | Stahl | Jul 2007 | B1 |
7302776 | Duncan et al. | Dec 2007 | B2 |
7540118 | Jensen | Jun 2009 | B2 |
7617643 | Pilz et al. | Nov 2009 | B2 |
7681365 | Klein | Mar 2010 | B2 |
7752817 | Pilz et al. | Jul 2010 | B2 |
7775006 | Giannos | Aug 2010 | B2 |
7814718 | Klein | Oct 2010 | B2 |
20020170249 | Yulkowski | Nov 2002 | A1 |
20030079425 | Morgan et al. | May 2003 | A1 |
20030213211 | Morgan et al. | Nov 2003 | A1 |
20040010998 | Turco | Jan 2004 | A1 |
20040045234 | Morgan et al. | Mar 2004 | A1 |
20040211150 | Bobenhausen | Oct 2004 | A1 |
20050246973 | Jensen | Nov 2005 | A1 |
20060032163 | Korn | Feb 2006 | A1 |
20060123723 | Weir et al. | Jun 2006 | A1 |
20060137293 | Klein | Jun 2006 | A1 |
20070068101 | Weir et al. | Mar 2007 | A1 |
20070261343 | Stahl, Sr. | Nov 2007 | A1 |
20080087366 | Yu et al. | Apr 2008 | A1 |
20080134589 | Abrams et al. | Jun 2008 | A1 |
20080172967 | Hilburn | Jul 2008 | A1 |
20080250738 | Howchin | Oct 2008 | A1 |
20090049781 | Pilz et al. | Feb 2009 | A1 |
20090090074 | Klein | Apr 2009 | A1 |
20090094912 | Klein | Apr 2009 | A1 |
20090178363 | Pilz et al. | Jul 2009 | A1 |
20090178369 | Pilz et al. | Jul 2009 | A1 |
20100126092 | Pilz et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2234347 | Oct 1999 | CA |
0346126 | Dec 1989 | EP |
2159051 | Nov 1985 | GB |
2411212 | Aug 2005 | GB |
06146433 | May 1994 | JP |
06220934 | Aug 1994 | JP |
WO 03038206 | May 2003 | WO |
WO 2007103331 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110005155 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
60954029 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12040658 | Feb 2008 | US |
Child | 12834360 | US |