Related applications are listed in an Application Data Sheet (ADS) filed with the present application. The entirety of each application listed in the ADS is hereby incorporated by reference herein. Also incorporated by reference herein in their entireties are U.S. Pat. No. 7,617,643 entitled Fire-Rated Wall Construction Product, U.S. Publication No. 2009/0178369 entitled Exterior Wall Construction Product, U.S. Publication No. 2011/0113709 entitled Wall Gap Fire Block Device, System and Method, and U.S. patent application Ser. No. 13/083,328, filed Apr. 8, 2011, entitled Fire-Rated Wall Construction Product.
1. Field of the Invention
This application is directed toward a two-piece track system for use in building construction, particularly for use in the interior and/or exterior wall of a building.
2. Description of the Related Art
Two-piece track systems for use in building construction are generally well known, as are two-piece track systems for use in the exterior and/or interior wall of a building that can allow for independent environmental movement of the tracks relative to one another. Two-piece track systems generally resemble both an outer U-shaped (or some other similar shaped) elongated tube, or track, and an inner U-shaped (or some other similar shaped) elongated tube, or track. Typically, the inner track is designed to receive or cover the ends of wall studs, and the outer track is designed to receive the inner track.
In two-piece track systems, independent movement of the tracks is sometimes desirable. The inner track is generally not confined in all directions, and thus is able to move independently from the outer track. Often times in use, the inner track is able to generally slide alongside the outer track in a horizontal or longitudinal direction relative to the outer track. In those areas of the world where earthquakes are common, this longitudinal or horizontal movement is important. If the inner track were not allowed to move freely in a generally longitudinal or horizontal direction, the stability of the wall and the building might be compromised.
In building construction it is not uncommon to have pieces of sheathing, or facade, attached to the outside of the building. These pieces of sheathing generally extend vertically alongside and down the exterior portion of the tracks and wall studs. The pieces of sheathing are attached to the tracks and/or wall studs by some connection means such as a screw or screws. In current two-piece track systems, the outer track's greatest width is larger than the inner track's greatest width. This creates an uneven outer surface for attachment of the sheathing. As a result, often sheathing elements flare out at their ends to accommodate for the uneven surface created by the different track widths.
Also, it is often difficult to keep the inner track from pulling or slipping away relative to the outer track during the installation procedure. In current two-piece track systems, screws are used to temporarily hold the outer and inner tracks in place during construction. If these screws are not removed after the wall is framed, the inner track will not be able to move as is desired.
It is also desirable or even mandatory to provide fire block arrangements at one or more linear wall gaps, which may be present between the top, bottom or sides of a wall and the adjacent structure. The fire block arrangements often involve the time-consuming process of inserting by hand a fire resistant material into the wall gap and then applying a flexible sealing layer to hold the fire resistant material in place. More recently, heat-expandable intumescent fire block materials have been integrated into the top or bottom track of the stud wall assembly.
Still, a need exists for additional fire block arrangements for wall gaps that provide advantages over the prior art arrangements. For example, it can be desirable for the intumescent material to be secured to a track member that is separate from the top or bottom track that directly receives or supports the studs, or separate from the stud in the case of a side wall gap. Such an arrangement enhances or maximizes the deflection length available for a slotted track (or other dynamic header) for a given flange length by separating the intumescent-carrying flanges from the slotted flanges. The arrangement also provides flexibility in that it allows different header tracks, footer tracks or studs to be used in combination with a single track incorporating the intumescent material. In addition, a two-piece track or track/stud arrangement can facilitate the creation of a seal between the components of the wall assembly and the adjacent structure. The intumescent material can be placed at a suitable location on the track member, such as along a side flange and/or a side edge portion of the web. Preferably, the header track, bottom track or stud is snugly received in the track member incorporating the intumescent, such that little or no gap is present between them.
An embodiment involves a two-piece fire-rated track assembly for a linear wall gap. The assembly includes a first track that has a web, a first flange and a second flange. The web is substantially planar and has a first side edge and a second side edge. The first flange and the second flange extend in the same direction from the first and second side edges, respectively. Each of the first and second flanges is substantially planar such that the first track defines a substantially U-shaped cross section. A second track has a web, a first flange and a second flange. The web is substantially planar and has a first side edge and a second side edge. The first flange and the second flange extend in the same direction from the first and second side edges, respectively. Each of the first and second flanges is substantially planar such that the second track defines a substantially U-shaped cross section. Each of the first and second flanges has a free end opposite a respective one of the first side edge and second side edge. Each of the free ends defines a kick-out portion that extends in a direction opposite the web and away from the other kick-out portion. At least one heat-expandable intumescent strip is attached to the second track and extends lengthwise along an outer surface of one of the first and second flanges. The intumescent strip includes a portion that extends past an outer surface of the web of the second track. The first track is snugly nested within the second track such that there is little or no gap therebetween.
In some arrangements, the at least one intumescent strip extends along and is attached to a portion of the web of the second track. The at least one intumescent strip can define a total length in a cross-sectional direction, wherein a portion of the total length located on the flange is at least five times greater than a portion of the total length on the web. The at least one intumescent strip can cover a substantial entirety of the outer surface of the flange. The at least one intumescent strip can be a first intumescent strip and a second intumescent strip on the first and second flanges, respectively.
In some arrangements, the first and second flanges of the first track are longer than the first and second flanges of the second track. The first and second flanges of the first track can be at least about twice as long as the first and second flanges of the second track. The assembly can include a plurality of slots on the first and second flanges of the first track, wherein the slots extend in a direction perpendicular to a length of the first track. The first track can be a footer or header track, or a stud.
An embodiment involves a fire-rated wall assembly including a header track having a web, a first flange and a second flange. The first and second flanges extend downwardly from the web and include a plurality of slots that extend in a vertical direction and are spaced along a length of the header track. A bottom track has a web, a first flange and a second flange. The first and second flanges extend upwardly from the web. A plurality of studs each has an upper end and a lower end. The lower end of each stud is received within and secured to the bottom track and the upper end of each stud is received within the header track. For each of the plurality of studs, one of a plurality of fasteners is passed through one of the plurality of slots of the first flange and into the upper end of the stud and another of the plurality of fasteners is passed through one of the plurality of the slots of the second flange and into the upper end of the stud. A receiver channel has a web, a first flange and a second flange. The first and second flanges extend downwardly from the web. The header track is snugly nested within the receiver channel and the first and second flanges of the receiver channel are shorter than the first and second flanges of the header track such that lower portions of the first and second flanges of the header track, including at least lower portions of each of the plurality of slots, are exposed from the receiver channel. At least one heat-expandable intumescent strip is attached to the receiver channel and extends lengthwise along an outer surface of one of the first and second flanges. The intumescent strip includes a portion that extends past an outer surface of the web of the receiver channel.
In some arrangements, at least one wallboard is coupled to the plurality of studs. The wallboard overlaps the one of the first flange and the second flange of the header track to which the at least one intumescent strip is attached and the one of the first flange and the second flange of the receiver channel to which the at least one intumescent strip is attached. The wallboard can overlap the at least one intumescent strip.
In some arrangements, each of the first and second flanges of the receiver channel has a free end opposite the web, and each of the free ends defines a kick-out portion that extends in a direction opposite the web and away from the other kick-out portion. The at least one intumescent strip can extend along and can be attached to a portion of the web of the receiver channel. The at least one intumescent strip can define a total length in a cross-sectional direction, wherein a portion of the total length located on the flange is at least five times greater than a portion of the total length on the web. The at least one intumescent strip can cover a substantial entirety of the outer surface of the flange. The at least one intumescent strip can be a first intumescent strip and a second intumescent strip on the first and second flanges, respectively. The first and second flanges of the header track can be at least about twice as long as the first and second flanges of the receiver channel.
Similarly, a need exists for improved two-piece track arrangements that may or may not include fire-resistant materials and that can be constructed for interior or exterior applications. A preferred system comprises an inner track configured to receive a plurality of wall studs therewithin, and an outer track configured to receive the inner track within the outer track. The outer track is configured so that its greatest width is equal to or less than the greatest width of the inner track, thus presenting a general flush surface for attachment of sheathing to the track when the system is used in an exterior wall. In some embodiments, the track flanges may comprises a plurality of angled surfaces to permit a mating nesting arrangement that has an added benefit of preventing separation of the two tracks once nested. The system may further comprise a strap or series of engaging surfaces on the inner and outer tracks that generally restrain the inner track relative to the outer track in addition and/or in lieu of angled flange surfaces.
These and other features, aspects and advantages of the various devices, systems and methods presented herein are described with reference to drawings of certain embodiments, which are intended to illustrate, but not to limit, such devices, systems, and methods. It is to be understood that the attached drawings are for the purpose of illustrating concepts of the embodiments discussed herein and may not be to scale.
Referring to
It is desirable that the greatest width of the outer track 12 be no greater than the greatest width of the inner track 14; i.e., equal to or less than the greatest width of the inner track 14. In the embodiments shown by example in
Although the present invention is applicable to both interior and exterior walls, in the context of an exterior wall specifically, it is contemplated that outer sheathing would be attached to the track assembly 10, with an upper sheathing board 30 and a lower sheathing board 32 positioned below it. By configuring the outer and inner tracks 12, 14 as described herein, the two-piece track system 10 may present a substantially flush surface profile alongside sheathing board 30 and 32, which minimizes flaring of the sheathing boards and creates a desirable building surface. Where the width of the outer track is meaningfully less than the width of the inner track, it is still possible to utilize and attach flat sheathing elements to maintain a flush building profile, although a small gap may exist (not shown) between the flange 24b and upper sheathing board 30 undetectable from outside the building.
When applied to a building, the track assembly 10 is secured to the ceiling surface 16 by securing the web 22 of outer track 12 to the ceiling surface by way of conventional fastening means (not shown). The inner track 14 may be slipped into the outer track either by way of a snap fit or other application. When shipped as a combined assembly, each track web 22, 26 comprises aligned holes and/or slots for permitting a fastener to be directed through the inner track web 26 and to engage the web 22 of the outer track 12 to the ceiling surface.
In current two-piece track systems, it is often necessary to use screws or similar devices to hold the two tracks together during installation or building construction. If the screws are not eventually pulled out after the wall is framed, the screws that were installed will prevent the inner track from being able to move independently from the outer track. One embodiment of the present invention overcomes this deficiency. Referring to
It is contemplated that the inner and outer tracks may be configured in one of a large number of mating configurations that permit relative longitudinal movement of the inner track within the outer track and yet preserve the assembly in tact. Examples of other configurations are shown in
Referring to
With reference to
Preferably, each of the first flange 406 and the second flange 408 include a plurality of elongated slots 410 that extend in a vertical direction, or in a direction from a free end of the flange 406, 408 toward the web 404 and perpendicular to a length direction of the track 400. The centerlines of adjacent slots 410 are spaced from one another along a length of the track 400 by a distance, such as one inch, in one embodiment. However, other offset distances could be provided, depending on the desired application. Preferably, the slots 410 are linear in shape and sized to receive and guide a fastener that couples a stud to the header track 400, as described below. The slots 410 allow relative movement between the header track 400 and the studs. The linear shape of the slots 410 constrains the fasteners to substantially vertical movement.
The two-piece track assembly 400 also includes a second track 412, which is also referred to as a receiver channel. The receiver channel 412 includes a web 414, a first flange 416 and a second flange 418. The first flange 416 and the second flange 418 each extend downwardly from opposing first and second side edges of the web 414. Preferably, a substantial portion or the entirety of each of the first flange 416 and second flange 418 is planar. Accordingly, the receiver channel 412 is substantially U-shaped in cross-section. However, in another arrangement, the receiver channel 412 could be provided in two pieces with the first flange 416 and a portion of the web 414 as one piece and the second flange 418 and portion of the web 414 as a second piece. Each piece of the receiver channel 412 could be separately attached to the first track 402 and/or the adjacent support structure.
Preferably, the free ends of each of the first flange 416 and the second flange 418 form a kick-out 420. The kick-out 420 extends outwardly from the remainder of the flange 416, 418 in a direction away from the web 414 (and away from the header track 402 when the two-piece track assembly 400 is assembled). The illustrated kick-out 420 is an outwardly-bent end portion of the flange 416, 418, which is oriented at an oblique angle relative to the remaining, preferably planar, portion of the flange 416, 418. As described further below, the kick-out 420 functions as a lead-in surface for the fasteners that pass through the slots 410 of the header track 402 when the heads of the fasteners move toward the top of the slots 410 and in between the flanges 416, 418 of the receiver channel 412 and the flanges 406, 408 of the header track 402. However, the kick-out 420 can be otherwise shaped if desired, depending on the intended application and/or desired functionality. For example, the kick-out 420 can be configured to contact the wallboard of an associated wall assembly to assist in creating a seal between the receiver channel 412 and the wallboard or to inhibit damage to the fire-resistant material on the receiver channel 412, as described below. In one arrangement, the kick-out 420 extends outwardly less than about ¼ inch, less than about ⅛ inch or less than about 1/16 inch.
The illustrated receiver channel 412 is a fire-rated channel and includes a fire-resistant material arranged to seal the head-of-wall gap at which the two-piece track assembly 400 is installed. Preferably, the fire-resistant material is an intumescent material strip 422, such as an adhesive intumescent tape. The intumescent strip 422 is made with a material that expands in response to elevated heat or fire to create a fire-blocking char. On suitable material is marketed as BlazeSeal™ from Rectorseal of Houston, Tex. Other suitable intumescent materials are available from Hilti Corporation, Specified Technologies, Inc., or Grace Construction Products. The intumescent material expands to many times (e.g., up to 35 times or more) its original size when exposed to sufficient heat (e.g., 350 degrees Fahrenheit. Thus, intumescent materials are used as a fire block because the expanding material tends to fill gaps. Once expanded, the intumescent material is resistant to smoke, heat and fire and inhibits fire from passing through the head-of-wall. It is understood that the term intumescent strip 422 is used for convenience and that the term is to be interpreted to cover other expandable fire-resistant materials as well, such as intumescent paints (e.g., spray-on) or fire-rated dry mix products, unless otherwise indicated. The intumescent strip 422 can have any suitable thickness that provides a sufficient volume of intumescent material to create an effective fire block, while having small enough dimensions to be accommodated in a wall assembly. That is, preferably, the intumescent material strips 422 do not cause unsightly protrusions or humps in the wall from excessive build-up of material. In one arrangement, the thickness of the intumescent strip 422 is between about 1/16 (0.0625) inches and ⅛ (0.125) inches, or between about 0.065 inches and 0.090 inches. One preferred thickness is about 0.075 inches. The kick-out 420 can extend outwardly a distance greater than the thickness of the intumescent strip 422, a distance approximately equal to the thickness of the intumescent strip 422 or a distance less than the thickness of the intumescent strip 422. The size of the kick-out 420 can be selected based on whether it is desirable for the wall board material to contact the kick-out 420 (e.g., to create a seal or protect the intumescent strip 422), the intumescent strip 422, or both the kick-out 420 and the intumescent strip 422.
An intumescent strip 422 is positioned on at least one side of the receiver channel 412 and, preferably, on each side of the receiver channel 412. The intumescent strip 422 preferably is positioned on one or both of the flange 416, 418 and the web 414. In the illustrated arrangement, the intumescent strip 422 is attached on both the flange 416 and the web 414 on one side of the receiver channel 412 and on both the flange 418 and the web 414 on the other side of the receiver channel 412. Preferably, the intumescent strip 422 covers a substantial entirety of the flange 416, 418 and also extends beyond the web 414. That is, each intumescent strip 422 preferably extends from the kick-out 420 of the respective flange 416, 418 to the web 414 and beyond the web 414. Such an arrangement permits the intumescent strip 422 to contact the ceiling or other overhead support structure to create an air seal at the head-of-wall. Preferably, the upper edge of the intumescent strip 422 wraps around the corner of the receiver channel 412 and is attached to the web 414. Such an arrangement causes the intumescent strip 422 to be pinched between the receiver channel 412 and the ceiling or other overhead support structure to assist in keeping the intumescent strip 422 in place when exposed to elevated heat, which may cause failure of an adhesive that secures the intumescent strip 422 to the receiver channel 412. However, although less preferred, the upper edge of the intumescent strip 422 could simply extend beyond (above, in the illustrated arrangement) the web 414 without being attached to the web 414.
Preferably, a relatively small amount of the intumescent strip 422 is positioned on the web 414 relative to the amount positioned on the flange 416, 418. For example, the intumescent strip 422 has a width, which in cross-section can be viewed as a length. Preferably, a length LF of the intumescent strip 422 on the flange 416, 418 is at least about 3 times the length LW of the intumescent strip 422 on the web 414. In one arrangement, the length LF of the intumescent strip 422 on the flange 416, 418 is at least about 5 times the length LW of the intumescent strip 422 on the web 414. In another arrangement, the length LF of the intumescent strip 422 on the flange 416, 418 is at least about 10 times the length LW of the intumescent strip 422 on the web 414. Preferably, the length LF of the intumescent strip 422 on the flange 416, 418 is between about ½ inches and 1½ inches and the length LW of the intumescent strip 422 on the web 414 is between about ⅛ inches and ½ inches. In one preferred arrangement, the length LF of the intumescent strip 422 on the flange 416, 418 is about ¾ inches and the length LW of the intumescent strip 422 on the web 414 is about ¼ inches.
In the illustrated arrangement, the flanges 416, 418 of the receiver channel 412 are shorter than the flanges 406, 408 of the header track 402. The flanges 416, 418 of the receiver track 412 can cover an upper portion of the slots 410 of the header track 402. Preferably, at least a lower portion of the slots 410 are exposed or left uncovered by the flanges 416, 418 of the receiver track 412. In one arrangement, the length of the flanges 416, 418 are about one-half of the length of the flanges 406, 408. The flanges 416, 418 can have a length of between about ¾ inches and 3 inches, or between about 1 and 2 inches. In one arrangement, the flanges 416, 418 have a length of about 1½ inches or 1¼ inches. The flanges 406, 408 of the header track 402 can be any suitable length. For example, the flanges 406, 408 can be between about 2 and 4 inches in length, with specific lengths of about 2½ inches, 3 inches, 3¼ inches and 3½ inches, among others.
The web 404 of the header track 402 can be any suitable width. For example, the web 404 can have a width between about 2½ and 10 inches, with specific lengths of about 3.5 inches, 4 inches, 5.5 inches, 6 inches and 7.5 inches, among others. Preferably, the width of the web 414 of the receiver channel 412 corresponds to the width of the web 404 of the header track 402. Although, preferably, the web 414 of the receiver channel 412 will be slightly wider than the web 404 of the header track 402 so that the header track 402 can be received within, or nest within, the receiver channel 412. The web 414 preferably is wider than the web 404 at least by an amount equal to twice the wall thickness of the header track 402 to accommodate the combined thickness of the flanges 406 and 408. However, preferably, the web 414 is not significantly wider than the web 404 such that there is no significant gap between the flanges 406, 408 of the header track 402 and the flanges 416, 418 of the receiver channel 412. Preferably, the gap, if any, between the flanges 406 and 416 or 408 and 418 is less than about the size of a head of the fastener used to attach the wall studs to the header track 402. In one arrangement, the gap on either side is less than about ⅛ inches or less than about ¼ inches. However, in other arrangements, it may be desirable to provide a significant gap. For example, it may be desirable to provide an air gap between the flanges 406 and 416 and/or 408 and 418, such as to inhibit direct contact and, thus, direct transfer of heat between the flanges 406 and 416 and/or 408 and 418. Such a gap may be less than or equal to about 2 inches, less than or equal to about 1 inch or less than or equal to about ½ inch. If desired, a thermal break material can be positioned between any or all corresponding surfaces of the tracks 402, 412. The thermal break material can be applied to the inner surfaces of the receiver channel 412. The thermal break material can be a liquid applied material, or an adhesively applied sheet membrane material to provide thermal break insulation to slow down heat passage during a fire. Any suitable insulating materials can be used.
The header track 402 and the receiver channel 412 can be constructed of any suitable material by any suitable manufacturing process. For example, the header track 402 and receiver channel 412 can be constructed from a rigid, deformable sheet of material, such as a galvanized light-gauge steel. However, other suitable materials can also be used. The header track 402 and receiver channel 412 can be formed by a roll-forming process. However, other suitable processes, such as bending (e.g., with a press brake machine), can also be used. Preferably, the intumescent strip(s) 422 are applied during the manufacturing process. However, in some applications, the intumescent strip(s) 422 could be applied after manufacturing (e.g., at the worksite).
The wall assembly of
The two-piece header track assembly 400 is secured to the ceiling 432 in any suitable manner, such as by a plurality of suitable fasteners 438. In some arrangements, it is preferred that the header track 402 and the receiver channel 412 are both secured to the ceiling 432. For example, each of the plurality of fasteners 436 can pass through the webs 404 and 414 of the header track 402 and receiver channel 412, respectively, to secure both tracks 402 and 412 to the ceiling 432. The header track 402 and the receiver channel 412 can be secured to the ceiling 432 separately from one another (e.g., using separate fasteners) or simultaneously. In one arrangement, the receiver channel 412 is secured to the ceiling 432 first and then the header track 402 is nested within the receiver channel 412 and secured to the ceiling 432, alone or as part of a wall assembly. In another arrangement, the receiver channel 412 and header track 402 are secured to the ceiling 432 at the same time utilizing the same fasteners 438. Thus, in such an arrangement, relative longitudinal (or “drift”) movement of the tracks 402 and 412 is minimized or prevented. However, if drift movement is desired, the receiver channel 412 can be fixedly secured to the ceiling 432 and the header track 402 can be free floating within the receiver channel 412 or otherwise secured to allow some relative drift movement, such as in any manner described above with reference to
One or more pieces of wallboard 440 are attached to one or both sides of the studs 434 by a plurality of suitable fasteners, such as drywall screws 442. Preferably, the uppermost drywall screws 442 are positioned close to the header track 402 but spaced sufficiently therefrom so as to not inhibit complete upward movement of the studs 434 relative to the header track 402.
As illustrated, preferably, in a neutral or unloaded condition, the heads of the fasteners 436 securing the studs 434 to the header track 402 are positioned below the lowermost ends, or free ends, of the flanges 416, 418 of the receiver channel 412. Preferably, in such a position, an upper end of the wallboard 440 rests against the intumescent strip 442 and/or the kick-out 420. When the wall is deflected such that the studs 434 move upwardly towards or to a closed position of the deflection gap (
The first two-piece track assembly 500 includes a sill plate, first track, or bottom track 502, and a second track, or receiver channel 512. The bottom track 502 preferably is substantially similar to the header track 402 described above. However, preferably, the bottom track 502 does not include slots on the side flanges (such as slots 410 of the header track 402) because relative movement between the studs 434 and the bottom track 502 is typically not desired. The receiver channel 512 preferably is identical or substantially identical to the receiver channel 412 described above. The bottom track 502 is snugly nested within the receiver channel 512. The combined bottom track 502 and receiver channel 512 (the two-piece track assembly 500) is secured to a lower support structure, such as a floor 532, which can also function as a ceiling of a lower level of the building. The two-piece track assembly 500 can be secured to the floor 532 with a plurality of suitable fasteners (not shown) similar to the fasteners 438 described above. The receiver channel 512 includes one or more intumescent strips 522, which expand in response to elevated heat or fire to create a fire block at the gap at the bottom of the wall assembly. The particular structure and arrangement of the intumescent strips 522 can be identical to the arrangements discussed above with respect to the receiver channel 412. With reference to
Similarly, the second two-piece track assembly 600 includes a first track, or stud 602, and a second track, or receiver channel 612. The stud 602 preferably is substantially similar to the studs 434 described above. Thus, with reference to
The described two-piece track assemblies 400, 500 and 600 provide convenient and adaptable fire block structures for a variety of linear wall gap applications, which in at least some embodiments permit the creation of a fire rated joint according to UL 2079. The separate receiver channels 412, 512, 612 include fire-retardant materials (e.g., intumescent material strips) secured (e.g., adhesively attached or bonded) to appropriate locations on the channels 412, 512, 612 and can be used with a variety of headers, footers (bottom tracks or sill plates) and studs to create a customizable assembly. Thus, one particular type of channel 412, 512, 612 can be combined with multiple sizes or types of base tracks, headers, sill plates or studs to result a large number of possible combinations. The receiver channels 412, 512, 612 can be configured for use with commonly-available tracks, headers, sill plates or studs, in addition to customized tracks, headers, sill plates or studs specifically designed for use with the receiver channels 412, 512, 612. Thus, the advantages of the described systems can be applied to existing wall assemblies. Therefore, the channels 412, 512, 612 can be stocked in bulk and used as needed with an appropriate framing component.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In particular, while the present two-piece track assemblies have been described in the context of particularly preferred embodiments, the skilled artisan will appreciate, in view of the present disclosure, that certain advantages, features and aspects of the assemblies may be realized in a variety of other applications, many of which have been noted above. Additionally, it is contemplated that various aspects and features of the invention described can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5689922 | Daudet | Nov 1997 | A |
6176053 | St. Germain | Jan 2001 | B1 |
20090090074 | Klein | Apr 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120066989 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61379047 | Sep 2010 | US | |
60954029 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12040658 | Feb 2008 | US |
Child | 12834360 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12834360 | Jul 2010 | US |
Child | 13223148 | US |