The present invention relates to a light string system, and especially relates to a two-pin LED pixel-controlled light string system.
The disadvantage of driving a plurality of related art two-pin LED pixel-controlled light emitting diode lamps is that each of the related art two-pin LED pixel-controlled light emitting diode lamps requires different address codes to be driven correctly, so that a lot of address codes of the related art two-pin LED pixel-controlled light emitting diode lamps are required. If the quantity of the related art two-pin LED pixel-controlled light emitting diode lamps is more, the quantity of the address codes is more, and manufacturing the related art two-pin LED pixel-controlled light emitting diode lamps is more complex, so that the related art two-pin LED pixel-controlled light emitting diode lamps are not manufactured easily.
In order to solve the above-mentioned problems, an object of the present invention is to provide a two-pin LED pixel-controlled light string system.
In order to achieve the object of the present invention mentioned above, the two-pin LED pixel-controlled light string system comprises a controller, a plurality of data capture converters, a plurality of power lines and a plurality of two-pin LED pixel-controlled light string sets. Each of the data capture converters is electrically connected to the controller respectively. The power lines are connected to the data capture converters. The two-pin LED pixel-controlled light string sets are connected to the power lines and are electrically connected to the data capture converter respectively. The data capture converter comprises a number-setting circuit. The controller sends a picture signal to the data capture converters. Each of the number-setting circuits is used to set a number of the data capture converter. According to the number, the data capture converter captures a captured part of the picture signal. The data capture converter converts the captured part of the picture signal to obtain a light signal. The data capture converter sends the light signal through the power line to the two-pin LED pixel-controlled light string set that the two-pin LED pixel-controlled light string set is in accordance with the data capture converter, to drive the two-pin LED pixel-controlled light string set to light. Each of the two-pin LED pixel-controlled light string sets lighting together forms a picture representing the picture signal.
The advantage of the present invention is that the two-pin LED pixel-controlled light emitting diode lamps of the two-pin LED pixel-controlled light string sets are manufactured easily (namely, the complexity is reduced). Moreover, the light signal is sent through the power line, so that the original control signal lines are not required, so that the lines are save.
Please refer to following detailed description and figures for the technical content of the present invention. The following detailed description and figures are referred for the present invention, but the present invention is not limited to it.
Each of the number-setting circuits 302 is used to set a number of the data capture converter 30. The controller 20 sends the picture signal 202 to the data capture converters 30. According to the number, the data capture converter 30 captures a captured part of the picture signal 202 (namely, the captured part of the picture signal 202 is in accordance with the number of the data capture converter 30). The data capture converter 30 converts the captured part of the picture signal 202 to obtain a light signal 204. The data capture converter 30 sends the light signal 204 through the power line 40 to the two-pin LED pixel-controlled light string sets 50 to drive the two-pin LED pixel-controlled light string sets 50.
The two-pin LED pixel-controlled light emitting diode lamp 504 comprises an address code. The address codes of the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light string set 50 are different. The address codes of the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light string set 50 form an address code group. Each of the two-pin LED pixel-controlled light string sets 50 comprises the same address code group. The light signal 204 comprises a plurality of signals with different address codes.
The data capture converter 30 sends the light signal 204 through the power line 40 to the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light strings 502 of the two-pin LED pixel-controlled light string set 50 that the two-pin LED pixel-controlled light string set 50 is in accordance with and electrically connected to the data capture converter 30, to drive the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light strings 502 of the two-pin LED pixel-controlled light string set 50 to light. The two-pin LED pixel-controlled light emitting diode lamp 504 reads the light signal 204 according to the address code that the two-pin LED pixel-controlled light emitting diode lamp 504 has, and then the two-pin LED pixel-controlled light emitting diode lamp 504 lights accordingly. The two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light strings 502 of the two-pin LED pixel-controlled light string sets 50 lighting together form a picture representing the picture signal 202.
In an embodiment, the numbers of the data capture converters 30 are set as 1˜n in order. The n is a positive integer greater than 1. The data capture converters 30 having a number m captures an m-part of the picture signal 202 to obtain the captured part. The m is greater than or equal to the n. The data capture converters 30 having the number m re-numbers the m-part of the picture signal 202 as 1˜q to obtain the light signal 204. The q is equal to a quantity of the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light string set 50. The address codes of the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light string set 50 are set as 1˜q in order. The two-pin LED pixel-controlled light emitting diode lamp 504 having an address code p is driven with a p-part of the light signal 204. The p is greater than or equal to 1. The p is less than or equal to q.
For example, the picture signal 202 comprises light data 1˜2000 to control 2000 of the two-pin LED pixel-controlled light emitting diode lamps 504. The numbers of the data capture converters 30 are set as 1˜10 in order. The data capture converters 30 having a number 1 captures a 1st-part (1˜200) of the picture signal 202 to obtain the captured part. The data capture converters 30 having the number 1 re-numbers the 1st-part of the picture signal 202 as 1˜200 to obtain the light signal 204. The address codes of the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light string set 50 are set as 1˜200 in order. The two-pin LED pixel-controlled light emitting diode lamp 504 having an address code 10 is driven with a 10th-part of the light signal 204.
For another example, the picture signal 202 comprises light data 1˜2000 to control 2000 of the two-pin LED pixel-controlled light emitting diode lamps 504. The numbers of the data capture converters 30 are set as 1˜10 in order. The data capture converters 30 having a number 2 captures a 2nd-part (201˜400) of the picture signal 202 to obtain the captured part. The data capture converters 30 having the number 2 re-numbers the 2nd-part of the picture signal 202 as 1˜200 to obtain the light signal 204. The address codes of the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light string set 50 are set as 1˜200 in order. The two-pin LED pixel-controlled light emitting diode lamp 504 having an address code 10 is driven with a 10th-part of the light signal 204.
For still another example, the picture signal 202 comprises light data 1˜2000 to control 2000 of the two-pin LED pixel-controlled light emitting diode lamps 504. The numbers of the data capture converters 30 are set as 1˜10 in order. The data capture converters 30 having a number 3 captures a 3rd-part (401˜600) of the picture signal 202 to obtain the captured part. The data capture converters 30 having the number 3 re-numbers the 3rd-part of the picture signal 202 as 1˜200 to obtain the light signal 204. The address codes of the two-pin LED pixel-controlled light emitting diode lamps 504 of the two-pin LED pixel-controlled light string set 50 are set as 1˜200 in order. The two-pin LED pixel-controlled light emitting diode lamp 504 having an address code 10 is driven with a 10th-part of the light signal 204.
Therefore, the advantage of the present invention is that the two-pin LED pixel-controlled light emitting diode lamps 504 are manufactured easily (namely, the complexity is reduced) because the present invention does not require a lot of address codes of the two-pin LED pixel-controlled light emitting diode lamps 504. Taking the content mentioned above as an example, 2000 of the two-pin LED pixel-controlled light emitting diode lamps 504 does not require 2000 of the address codes. Utilizing the data capture converters 30, 2000 of the two-pin LED pixel-controlled light emitting diode lamps 504 require only 200 of the address codes. Moreover, the light signal 204 is sent through the power line 40, so that the original control signal lines are not required, so that the lines are save.
The picture signal 202 comprises a plurality of pulse waves. The data capture converter 30 counts the pulse waves of the picture signal 202 received by the data capture converter 30. According to the number, the data capture converter 30 captures the captured part of the picture signal 202, wherein the captured part is captured according to the number and a counting value.
For example, the picture signal 202 comprises 2000 of the pulse waves. The number of the data capture converter 30 is 2. Then, the data capture converter 30 counts (skips) the pulse waves 1˜200, and then the data capture converter 30 captures the pulse waves 201˜400.
The data capture converter 30 further comprises a control integrated circuit 312, a first transistor switch 314, a first resistor 316, a first capacitor 318, a voltage regulator 320, a second transistor switch 322, a second capacitor 324 and a diode 326. The control integrated circuit 312 is used to receive the picture signal 202 and generate the light signal 204.
The control integrated circuit 312 is electrically connected to the number-setting circuit 302. The first transistor switch 314 is electrically connected to the control integrated circuit 312. The first resistor 316 is electrically connected to the number-setting circuit 302, the control integrated circuit 312 and the first transistor switch 314. The first capacitor 318 is electrically connected to the number-setting circuit 302, the control integrated circuit 312, the first transistor switch 314 and the first resistor 316. The voltage regulator 320 is electrically connected to the number-setting circuit 302, the control integrated circuit 312, the first transistor switch 314, the first resistor 316 and the first capacitor 318. The second transistor switch 322 is electrically connected to the control integrated circuit 312 and the first transistor switch 314. The second capacitor 324 is electrically connected to the number-setting circuit 302, the control integrated circuit 312, the first resistor 316, the first capacitor 318 and the voltage regulator 320. The diode 326 is electrically connected to the voltage regulator 320, the second capacitor 324 and the second transistor switch 322.
The data capture converter 30 further comprises a control integrated circuit 312, a first transistor switch 314, a first resistor 316, a first capacitor 318, a second transistor switch 322, a second capacitor 324, a diode 326, a second resistor 336, a third resistor 338, a first Zener diode 340, a second Zener diode 342, a third transistor switch 344 and a third Zener diode 346. The control integrated circuit 312 is used to receive the picture signal 202 and generate the light signal 204.
The control integrated circuit 312 is electrically connected to the number-setting circuit 302. The first transistor switch 314 is electrically connected to the control integrated circuit 312. The first resistor 316 is electrically connected to the first transistor switch 314. The first capacitor 318 is electrically connected to the first transistor switch 314 and the first resistor 316. The second transistor switch 322 is electrically connected to the control integrated circuit 312. The second capacitor 324 is electrically connected to the number-setting circuit 302, the control integrated circuit 312 and the first transistor switch 314. The diode 326 is electrically connected to the first transistor switch 314, the first resistor 316 and the first capacitor 318. The second resistor 336 is electrically connected to the second transistor switch 322, the number-setting circuit 302, the control integrated circuit 312 and the second capacitor 324. The third resistor 338 is electrically connected to the diode 326 and the second transistor switch 322. The first Zener diode 340 is electrically connected to the number-setting circuit 302, the control integrated circuit 312, the second resistor 336, the second capacitor 324 and the first transistor switch 314. The second Zener diode 342 is electrically connected to the first transistor switch 314, the first resistor 316, the first capacitor 318 and the diode 326. The third transistor switch 344 is electrically connected to the number-setting circuit 302, the control integrated circuit 312, the second resistor 336, the second capacitor 324, the first Zener diode 340, the second transistor switch 322 and the third resistor 338. The third Zener diode 346 is electrically connected to the third transistor switch 344, the third resistor 338 and the diode 326. The third transistor switch 344 is a P-type metal-oxide-semiconductor field effect transistor (P-MOSFET).
Although the present invention has been described with reference to the preferred embodiment thereof, it will be understood that the invention is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.