Some embodiments of the present invention pertain to antennas. Some embodiments pertain to multiple-input multiple-output (MIMO) communication systems, and some embodiments pertain to multicarrier and orthogonal frequency division multiplexed (OFDM) communications.
Conventional dual-polarized antennas have been difficult to implement on printed circuit boards because of the complexity of their feed structure. Some conventional feed structures employ dual coaxial cables for each pair of radiating elements requiring four coaxial cables.
The following description and the drawings illustrate specific embodiments of the invention sufficiently to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Examples merely typify possible variations. Individual components and functions are optional unless explicitly required, and the sequence of operations may vary. Portions and features of some embodiments may be included in or substituted for those of others. Embodiments of the invention set forth in the claims encompass all available equivalents of those claims. Embodiments of the invention may be referred to, individually or collectively, herein by the term “invention” merely for convenience and without intending to limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed.
Referring to
In some embodiments, first conductor 113 of first signal input 109 may extend through insulating material 111 to couple with first port crossover line 107. Second conductor 115 of first signal input 109 may couple with third radiating element 103. First conductor 114 of second signal input 110 may extend through insulating material 111 to couple with first radiating element 101. Second conductor 116 of second signal input 110 may couple with second port crossover line 108.
In some multiple-input multiple-output (MIMO) embodiments, first signal input 109 may couple the first communication signal and second signal input 110 may couple the second communication signal. In these MIMO embodiments, signal inputs 109 and 110 may carry separate and distinct communication signals for either simultaneous transmission by a MIMO transmitter or simultaneous reception by a MIMO receiver.
In some non-MIMO dual-polarized embodiments, the signals communicated by second and third radiating elements 102 and 103 may have a first polarization, and the signals communicated by first and fourth radiating elements 101 and 104 may have a second polarization. In these non-MIMO embodiments, the signal components communicated by adjacent radiating elements of structure 100 may be ninety-degrees out-of-phase with each other allowing for the transmission and/or reception of a circularly polarized signal, although the scope of the invention is not limited in this respect.
In some embodiments, first signal input 109 may comprise a first coaxial cable input, first conductor 113 of first signal input 109 may be a center conductor and second conductor 115 of first signal input 109 may be an outer ground path conductor. Second signal input 110 may comprise a second coaxial cable input, first conductor 114 of second signal input 110 may be a center conductor and second conductor 116 of second signal input 110 may be an outer ground path conductor.
In some embodiments, first and second signal inputs 109 and 110 may use RF connectors 119 and 120 for coupling with other system components. In some embodiments, antenna structure 100 may include coaxial cables having coaxial connectors at the opposite ends for connecting to other system components, although the scope of the invention is not illustrated in this respect.
In some embodiments, insulating material 111 may comprise a printed circuit board. In some embodiments, insulating material 111 may be an insulating substrate, although the scope of the invention is not limited in this respect.
In some embodiments, second and third radiating elements 102 and 103 may be diagonally or oppositely positioned with respect to each other for communicating (i.e., transmitting and/or receiving) a first communication signal. In these embodiments, first and fourth radiating elements 101 and 104 may also be diagonally or oppositely positioned with respect to each other for communicating (i.e., transmitting and/or receiving) a second communication signal. In some embodiments, the four radiating elements may be disposed on insulating material 111 in quadrature positions about center region 112 as illustrated in
In some embodiments, the radiating elements may have either a spacing or an overlap therebetween that may be selected based on the desired performance characteristics of the antenna structure.
Although radiating elements 101, 102, 103, and 104 are illustrated as having a particular shape (e.g., somewhat like a pinwheel), the scope of the invention is not limited in this respect. Radiating elements with other shapes may also be suitable.
In some embodiments, first port crossover line 107 may extend diagonally on first side 105 across center region 112 of antenna structure 100, and second port crossover line 108 may extend diagonally on second side 106 across center region 112 of antenna structure 100. In some embodiments, first and second port crossover lines 107 and 108 may be substantially perpendicular to each other on opposite sides of insulating material 111. In some embodiments, first and second port crossover lines 107 and 108 may comprise microstrip lines, although the scope of the invention is not limited in this respect.
In some embodiments, antenna structure 100 may comprise a two-signal input antenna structure for use in a multiple-input multiple-output multicarrier communication system, such as an orthogonal frequency division multiplexed (OFDM) communication system, although the scope of the invention is not limited in this respect. In these embodiments, second and third radiating elements 102 and 103 may communicate a first multicarrier communication signal and first and fourth radiating elements 101 and 104 may communicate a second multicarrier communication signal. In some embodiments, the first and second communication signals may be transmitted concurrently and may comprise a single orthogonal frequency division multiplexed symbol, although the scope of the invention is not limited in this respect. Examples of these embodiments are described in more detail below.
In some embodiments, radiating elements 101, 102, 103 and 104, and first and second port crossover lines 107 and 108 may comprise almost any conductive material that may be disposed or printed on insulating material 111. In some embodiments, the conductive material may comprise copper, gold or silver, although the scope of the invention is not limited in this respect. In some embodiments, insulating material 111 may comprise almost any insulating substrate including many convention printed circuit board materials.
Although the S-parameters illustrated in
In some embodiments, transceiver 312 may comprise radio-frequency (RF) transmitter (TX) circuitry 308A and 309B to generate first and second first and second communication signals 309A and 309B respectively from first and second baseband signals 311A and 311B. In these embodiments, transceiver 312 may also comprise baseband processing circuitry 306 to generate first and second transmit baseband signals 311A and 311B from one or more data streams 307 for concurrent transmission.
In some embodiments, transceiver 312 may comprise RF receiver (RX) circuitry 304A and 304B to receive communication signals from antenna structure 302 and generate first and second received baseband signals 305A and 305B respectively from the received first and second multicarrier communication signals 303A and 303B. In some of these embodiments, baseband processing circuitry 306 may weight and combine components of first and second received baseband signals 305A and 305B (e.g., in the frequency-domain) to generate one or more output data streams 307, although the scope of the invention is not limited in this respect.
Although communication station 300 is illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements. For example, some elements may comprise one or more microprocessors, DSPs, application specific integrated circuits (ASICs), and combinations of various hardware and logic circuitry for performing at least the functions described herein. In some embodiments, the functional elements of station 300 may refer to one or more processes operating on one or more processing elements.
In some embodiments, multicarrier transceiver 312 may be part of a wireless communication device that may transmit multicarrier signals, such as orthogonal frequency division multiplexed (OFDM) communication signals. In some embodiments, multicarrier transceiver 312 may communicate over a multicarrier communication channel. The multicarrier communication channel may be within a predetermined frequency spectrum and may comprise a plurality of orthogonal subcarriers. In some embodiments, the orthogonal subcarriers may be closely spaced OFDM subcarriers. To help achieve orthogonality between the closely spaced subcarriers, each subcarrier may have a null at substantially a center frequency of the other subcarriers. In some embodiments, to help achieve orthogonality between the closely spaced subcarriers, each subcarrier may have an integer number of cycles within a symbol period, although the scope of the invention is not limited in this respect.
In some embodiments, the frequency spectrums for a multicarrier communication signal may comprise either a 5 GHz frequency spectrum or a 2.4 GHz frequency spectrum. In these embodiments, the 5 GHz frequency spectrum may include frequencies ranging from approximately 4.9 to 5.9 GHz, and the 2.4 GHz spectrum may include frequencies ranging from approximately 2.3 to 2.5 GHz, although the scope of the invention is not limited in this respect as other frequency spectrums are also equally suitable. In some broadband and WiMax embodiments, the frequency spectrum for communications may comprise frequencies between 2 and 11 GHz, although the scope of the invention is not limited in this respect.
In some embodiments, multicarrier transceiver 312 may communicate in accordance with specific communication standards, such as the Institute of Electrical and Electronics Engineers (IEEE) standards including IEEE 802.11(a), 802.11(b), 802.11(g), 802.11 (h) and/or 802.11 (n) standards for wireless local area networks (WLANs), although multicarrier transceiver 312 may also be suitable to transmit and/or receive communications in accordance with other techniques including the Digital Video Broadcasting Terrestrial (DVB-T) broadcasting standard, and the High performance radio Local Area Network (HiperLAN) standard. In some broadband and WiMax embodiments, multicarrier transceiver 312 may communicate broadband wireless communications in accordance with the IEEE 802.16(e) standards for wireless metropolitan area networks (WMANs).
In some embodiments, multicarrier transceiver 312 may be part of a wireless communication device, such as personal digital assistant (PDA), a laptop or portable computer with wireless communication capability, a web tablet, a wireless telephone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, television or other device that may receive and/or transmit information wirelessly. In some broadband and WiMax embodiments, multicarrier transceiver 312 may be part of a multicarrier communication station.
The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims.
In the foregoing detailed description, various features are occasionally grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments of the subject matter require more features than are expressly recited in each claim. Rather, as the following claims reflect, invention may lie in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate preferred embodiment.
Number | Name | Date | Kind |
---|---|---|---|
3299430 | Huber et al. | Jan 1967 | A |
3757342 | Jasik et al. | Sep 1973 | A |
4962383 | Tresselt | Oct 1990 | A |
5001492 | Shapiro et al. | Mar 1991 | A |
6744412 | Lopez | Jun 2004 | B1 |
20050128161 | Kagaya et al. | Jun 2005 | A1 |