The present invention relates to a two-port triplate-line/waveguide converter which has two ports coupled to an electromagnetic field in a rectangular waveguide and transfers the electromagnetic field to triplate lines connected to these ports.
Priority is claimed on Japanese Patent Application No. 2013-127069, filed Jun. 18, 2013, the content of which is incorporated herein by reference.
Satellite communication and fixed wireless access systems (FWA) in which wireless transmission is performed in a microwave band of 10 GHz or above or in a millimeter wave band mostly employ planar antennas consisting of an array of a large number of patch antennas. A feed line for these patch antennas has a simple structure, so that a parallel feed can be precisely realized at low cost. Moreover, the feed line is formed as a triplate line capable of ensuring high gain and high efficiency.
As shown in
The elements stacked in this way are configured as follows.
A feed system of such a triplate feed type planar antenna is configured, for example, as shown in
A waveguide-triplate line converter (simply referred to as “converter” below) 43C is disposed at a predetermined position surrounded by the patch antennas 43A1,1 to 43Am,n on the flexible substrate 43.
Also, on the flexible substrate 43, a main line 43B is formed to have one end extending to a probe 43CP inserted from a sidewall of a waveguide 43CWC constituting the converter 43C into the waveguide 43CWC and the other end extending to a bus bar 43FM of the aforementioned feed line 43F realizing the tournament feed.
Among the components of the converter 43C, the waveguide 43CWC includes the following elements, as shown in
In the ground plane 41, the annular member 43CR, the slot plate 44, and the annular member 43Cr, holes (not shown) into which the screws 43S-1 to 43S-5 are inserted and which have inside walls having a size and a shape with which they stably come in contact with sidewalls of these screws 43 S-1 to 43 S-5 are formed in advance.
In the triplate feed type planar antenna having such a configuration, the waveguide 43CWC is sandwiched by the screws 43S-1 to 43S-5 between the aforementioned waveguide flange 43CF and the short plate 43Cs, and formed by inside walls of the ground plane 41, the annular member 43CR, the slot plate 44, and the annular member 43Cr electrically connected by these screws 43 S-1 to 43S-5.
In
On the flexible substrate 43, this “electromagnetic field of a triplate line” is guided to a point which is deviated from the center of the bus bar 43FM by a distance corresponding to a quarter of a wavelength, and is fed to half of the patch antennas 43A1,1 to 43Am,n and the other half thereof with a phase difference of 180 degrees through the bus bar 43FM in a tournament manner.
Also, in such a triplate feed type planar antenna, cross-polarization components become two components having opposite phases and cancel each other out due to the half of the patch antennas 43A1,1 to 43Am,n and the other half, and thus cross-polarization discrimination is improved.
As prior art relevant to the present invention, there are Patent Literature 1 to Patent Literature 3 listed below.
Patent Literature 1 discloses a polarized wave shared planar antenna “obtained by sequentially stacking a ground conductor 11, a dielectric 10, a feed substrate 9 having a plurality of radiation elements 7 and a feed line 8 formed therein, a dielectric 6, a ground conductor 1 having a plurality of slots 12 installed so that the respective slots 12 are disposed right above the radiation elements 7, a dielectric 2, a feed substrate 5 having a plurality of radiation elements 3 and a feed line 4 formed therein, a dielectric 13, and a ground conductor 15 having a plurality of slots 14 installed so that the respective slots 14 are disposed right above the radiation elements 3, and configured by electromagnetically coupling the radiation elements 3 and the radiation elements 7 together so that the excitation direction of the radiation elements 3 in accordance with the feed line 4 and the excitation direction of the radiation elements 7 in accordance with the feed line 8 cross at right angles, in which radiation elements corresponding to about half the number of array elements of the feed substrate 5 and the feed substrate 9 and a feed line or elements corresponding to about half the number of array elements of any one feed substrate and a feed line are spatially rotated 180 degrees with respect to a reference excitation direction and disposed, and which electrically changes a feeding phase by 180 degrees to be excited,” thus having a characteristic such that “load on a signal-processing circuit is reduced in a planar antenna side as much as possible, and thus a cross-polarization characteristic and a wide band characteristic of isolation are obtained.”
Patent Literature 2 discloses a waveguide/microstrip line converter “in which a substrate providing a microstrip line so that an antenna probe is disposed toward an opening of a waveguide is sandwiched between a cap corresponding to the opening of the waveguide and a base member, and the microstrip line is connected to both ends of the antenna probe installed on the substrate” thus having a characteristic such that “it also has a function of distributing a feed from the antenna probe in order to reduce removal of antenna elements on the substrate as much as possible.”
Patent Literature 3 discloses a planar antenna “that has a triplate configuration in which strip lines formed on a substrate are inserted into a ground substrate with gaps left on both sides, has radiation elements formed on one side of the ground substrate, and supplies power to the respective radiation elements in parallel by a feed line of the strip lines, in which strip line-waveguide converters having strip lines of a final feed point inserted from both side surfaces of a waveguide and having a phase difference of 180 degrees between powers input from both strip lines to the waveguide are formed in spaces between radiation elements horizontally and vertically formed at regular spatial intervals,” thus having a characteristic such that “it enables a feed by a waveguide capable of achieving favorable power combining (branching).”
Japanese Unexamined Patent Application, First Publication No. Hei 09-312515
Japanese Unexamined Patent Application, First Publication No. Hei 11-312909
Japanese Patent No. 2595339
In the conventional example described above, the main line 43B is connected to the point deviated from the center of the bus bar 43FM by a quarter of a wavelength, so that the aforementioned phase difference of 180 degrees is ensured.
Therefore, when a frequency of a wireless signal to be transmitted or received has a wide-ranging value or a band occupied by the wireless signal is wide (for example, 2 GHz in a 12 GHz band), it is difficult to set the phase difference with sufficient precision.
Moreover, an error of such a phase difference in accordance with a frequency is a primary factor that causes degradation of cross-polarization discrimination to shift the direction of a main lobe, and puts a limitation on application of the triplate feed type planar antenna.
The error of such a phase difference can be reduced by configuring the triplate feed type planar antenna, for example, as shown in
Also, the error of a phase difference can be reduced by configuring the triplate feed type planar antenna, for example, as shown in
However, in these configurations shown in
Therefore, in practice, the configurations shown in
An object of the present invention is to provide a two-port triplate-line/waveguide converter in which coupling of triplate lines is realized over a wide band in opposite phases, at low cost without drastically complicating the configuration.
In accordance with a first aspect of the present invention, a two-port triplate-line/waveguide converter includes a rectangular waveguide, and two probes which connect to central conductors of separate triplate lines through slits separately formed in two opposite inside walls of the rectangular waveguide and having openings on an imaginary straight line crossing the two inside walls at right angles. Tips of the two probes are bent inside the rectangular waveguide, and the two probes constitute monopole antennas with the inside walls functioning as ground planes.
In other words, the two probes are bent in the rectangular waveguide, so that unnecessary coupling between the two probes is reduced or suppressed. Moreover, the two probes function as the monopole antennas, so that two ports of opposite phases coupled to an electromagnetic field in the waveguide over a wide band are formed between the two probes and the separate triplate lines.
In accordance with a second aspect of the present invention, a two-port triplate-line/waveguide converter includes a rectangular waveguide, and two probes which connect to central conductors of separate triplate lines through slits separately formed in two opposite inside walls of the rectangular waveguide and having openings on an imaginary straight line crossing the two inside walls at right angles. Tips of the two probes branch in a plurality of directions inside the rectangular waveguide, and the two probes constitute monopole antennas with the inside walls functioning as ground planes.
In other words, the two probes branch in a plurality of directions in the rectangular waveguide, so that unnecessary coupling between the two probes is reduced or suppressed. Moreover, the two probes function as the monopole antennas, so that two ports of opposite phases coupled to an electromagnetic field in the waveguide over a wide band are formed between the two probes and the separate triplate lines.
In accordance with a third aspect of the present invention, a two-port triplate-line/waveguide converter includes two probes which connect to central conductors of separate triplate lines through slits separately formed in two opposite inside walls of the rectangular waveguide and having openings on an imaginary straight line crossing the two inside walls at right angles. Tips of the two probes are bent in directions not opposite to each other inside the rectangular waveguide, and the two probes constitute monopole antennas with the inside walls functioning as ground planes.
In other words, the tips of the two probes are bent in directions not opposite to each other in the rectangular waveguide, so that unnecessary coupling between the two probes is reduced or suppressed. Moreover, the two probes function as the monopole antennas, so that two ports of opposite phases coupled to an electromagnetic field in the waveguide over a wide band are formed between the two probes and the separate triplate lines.
According to the present invention, transfer of signals having phases opposite to each other is realized in parallel between a rectangular waveguide and two triplate lines without involving a drastic change of the configuration and a heavy dependence on a frequency compared to the conventional example.
An apparatus or a system to which the present invention is applied does not place serious obstructions or limitations on cost, installation, temperature, power consumption, or the like, and prevents the occurrence of technical problems resulting from a lack of precision in the opposite phases or a change of performance with high precision.
Hereinafter, an embodiment of the present invention will be described in detail based on the drawings.
In
The present embodiment and the conventional example shown in
L=L1+L2
L=λ/4
In the present embodiment configured in this way, both of the probes 12-1 and 12-2 function as monopole antennas which use a sidewall of the waveguide 11 as a ground plane.
Here, both of the probes 12-1 and 12-2 are bent in L shapes, and thus are sufficiently isolated from each other. Also, since both the probes 12-1 and 12-2 resonate with L=(1/4)λ, the current distribution of each of the probes 12-1 and 12-2 becomes even, and thus a band is widened.
Moreover, phases of an electromagnetic field coupled to the probes 12-1 and 12-2 in the waveguide 11 become opposite to each other, that is, 180 degrees.
In other words, half of the patch antennas 43A1,1 to 43Am,n and the other half thereof are fed in parallel with power in opposite phases by the two-port waveguide-triplate line converter which includes the waveguide 11 and the probes 12-1 and 12-2 as described above.
Therefore, in the triplate feed type planar antenna to which the present embodiment is applied, slight changes are made as will be described below, and each half of the provided patch antennas is stably fed in an opposite phase.
As shown in
In the present embodiment, a feed by opposite phases is stably realized over a wide band as described above, and thus a shift of a main lobe which is about 0.3 degrees in the conventional example is suppressed to be within 0.1 degrees.
In the present embodiment, when isolation between the probes 12-1 and 12-2 and overall feed efficiency are achieved in a desired range, the probes 12-1 and 12-2 are not limited to the aspect shown in
In the present embodiment, through-holes into which the probes 12-1 and 12-2 are inserted are formed in a linear shape in two sidewalls of the waveguide 11 opposite to each other.
However, such a shape of the through-holes may be a shape which is bent in a desired shape and size as long as there is no problem in overall characteristics.
These through-holes may not necessarily have the same shape or size.
In the present embodiment, the number of patch antennas to be fed in phases opposite to each other may be any value.
In addition, the present invention can be applied not only to a triplate feed type planar antenna but also to any apparatus or system in which coupling between a waveguide and two triplate lines should be stably realized over a wide band with high precision in opposite phases.
Also, the present invention can be applied not only to a polarized wave-dedicated planar antenna that forms a wireless transmission path with polarized waves common in an uplink and a downlink, but also to, for example, a polarized wave shared planar antenna that forms these links with polarized waves orthogonal to each other as shown in
The present invention is not limited to the embodiment described above. Various embodiments can be made within the scope of the present invention, and any modifications may be made to all or some of the components.
The present invention can be widely applied to two-port triplate-line/waveguide converters that have two ports coupled to an electromagnetic field in a rectangular waveguide, and transfer the electromagnetic field to triplate lines connecting to these ports.
According to the present invention, transfer of signals having phases opposite to each other is realized in parallel between a rectangular waveguide and two triplate lines without involving a drastic change of the configuration and a heavy dependence on a frequency compared to the conventional example.
An apparatus or a system to which the present invention is applied does not put serious obstructions or limitations on cost, installation, temperature, power consumption, or the like, and prevents the occurrence of technical problems resulting from a lack of precision in the opposite phases or a change of performance with high precision.
Number | Date | Country | Kind |
---|---|---|---|
2013-127069 | Jun 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/063684 | 5/23/2014 | WO | 00 |