Two position valve with face seal and pressure relief port

Information

  • Patent Grant
  • 9879748
  • Patent Number
    9,879,748
  • Date Filed
    Thursday, March 13, 2014
    10 years ago
  • Date Issued
    Tuesday, January 30, 2018
    6 years ago
Abstract
A shock absorber has a housing with a piston rod assembly disposed therein. A first rod guide member is secured within a first portion of the housing so as to be concentrically disposed about at least a portion of the piston rod assembly. A second rod guide member is secured within the housing adjacent the first rod guide member so as to be concentrically disposed about at least another portion of the piston rod assembly. A digital valve assembly is disposed within the second rod guide member and fluidly couples chambers within the shock absorber.
Description
FIELD

The present disclosure relates generally to hydraulic dampers or shock absorbers for use in a suspension system such as a suspension system used for automotive vehicles. More particularly, the present disclosure relates to an improved valve assembly for a shock absorber.


BACKGROUND

This section provides background information related to the present disclosure which is not necessarily prior art.


Shock absorbers are used in conjunction with automotive suspension systems to absorb unwanted vibrations that occur during driving. To absorb the unwanted vibrations, shock absorbers are generally connected between the sprung portion (body) and the unsprung portion (suspension) of the automobile. A piston is located within a pressure tube of the shock absorber and the pressure tube is connected to the unsprung portion of the vehicle. The piston is connected to the sprung portion of the automobile through a piston rod which extends through the pressure tube. The piston divides the pressure tube into an upper working chamber and a lower working chamber, both of which are filled with hydraulic fluid. Because the piston, through valving, is able to limit the flow of the hydraulic fluid between the upper and the lower working chambers when the shock absorber is compressed or extended, the shock absorber is able to produce a damping force which counteracts the vibration which would otherwise be transmitted from the unsprung portion to the sprung portion of the vehicle. In a dual-tube shock absorber, a fluid reservoir or reserve chamber is defined between the pressure tube and a reserve tube. A base valve is located between the lower working chamber and the reserve chamber to also produce a damping force which counteracts the vibrations which would otherwise be transmitted from the unsprung portion of the vehicle to the sprung portion of the automobile.


As described above, for a dual-tube shock absorber, the valving on the piston limits the flow of damping fluid between the upper and lower working chambers when the shock absorber is extended to produce a damping load. The valving on the base valve limits the flow of damping fluid between the lower working chamber and the reserve chamber when the shock absorber is compressed to produce a damping load. For a mono-tube shock absorber, the valving on the piston limits the flow of damping fluid between the upper and lower working chambers when the shock absorber is extended or compressed to produce a damping load. During driving, the suspension system moves in jounce (compression) and rebound (extension). During jounce movements, the shock absorber is compressed, causing damping fluid to move through the base valve in a dual-tube shock absorber or through the piston valve in a mono-tube shock absorber. A damping valve located on the base valve or the piston controls the flow of damping fluid and, thus, controls the damping force created. During rebound movements, the shock absorber is extended causing damping fluid to move through the piston in both the dual-tube shock absorber and the mono-tube shock absorber. Again, a damping valve located on the piston controls the flow of damping fluid and, thus, controls damping force created.


In a dual-tube shock absorber, the piston and the base valve normally include a plurality of compression passages and a plurality of extension passages. During jounce or compression movements in a dual-tube shock absorber, the damping valve or the base valve opens the compression passages in the base valve to control fluid flow and produce a damping load. A check valve on the piston opens the compression passages in the piston to replace damping fluid in the upper working chamber, but this check valve does not contribute to the damping load. The damping valve on the piston closes the extension passages of the piston and a check valve on the base valve closes the extension passages of the base valve during a compression movement. During rebound or extension movements in a dual-tube shock absorber, the damping valve on the piston opens the extension passages in the piston to control fluid flow and produce a damping load. A check valve on the base valve opens the extension passages in the base valve to replace damping fluid in the lower working chamber, but this check valve does not contribute to the damping load.


In a mono-tube shock absorber, the piston normally includes a plurality of compression passages and a plurality of extension passages. The shock absorber will also include means for compensating for the rod volume flow of fluid as is well known in the art. During jounce or compression movements in a mono-tube shock absorber, the compression damping valve on the piston opens the compression passages in the piston to control fluid flow and produce a damping load. The extension damping valve on the piston closes the extension passages of the piston during a jounce movement. During rebound or extension movements in a mono-tube shock absorber, the extension damping valve on the piston opens the extension passages in the piston to control fluid flow and produce a damping load. The compression damping valve on the piston closes the compression passages of the piston during a rebound movement.


For most dampers, the damping valves are designed as a normal close/open valve. Because of this close/open design, these passive valve systems are limited in their ability to adjust the generated damping load in response to various operating conditions of the vehicle. Accordingly, some valves have been designed to include a bleed flow of damping fluid, such as in U.S. Pat. No. 8,616,351. While this type of design works effectively, it requires high precision components that are manufactured with tight tolerances.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


A shock absorber includes a rod guide assembly for housing at least one digital valve assembly. The digital valve assembly includes a guide member disposed in the rod guide assembly, a spool movably disposed within the guide member, and a coil assembly disposed adjacent the spool. While the disclosure illustrates the digital valve assemblies being located in the rod guide assembly, the digital valve assemblies can also be located in the piston rod and/or the base valve assembly as disclosed in U.S. Pat. No. 8,616,351, the disclosure of which is expressly incorporated herein by reference in its entirety.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is an illustration of an automobile having shock absorbers which incorporate a two-position valve assembly within a rod guide assembly in accordance with the present disclosure;



FIG. 2 is a side view, partially in cross-section of a dual-tube shock absorber that incorporates the two-position valve assembly in the rod guide assembly in accordance with the present disclosure;



FIG. 3 is an enlarged side view, partially in cross-section of the rod guide assembly from the shock absorber illustrated in FIG. 2;



FIGS. 4A and 4B are enlarged views in cross-section of the two-position valve assembly in the rod guide assembly from the shock absorber illustrated in FIG. 2, the valve assembly being in open and closed positions, respectively;



FIGS. 4C and 4D are enlarged views in cross-section of sealing surfaces of valve elements shown in FIG. 4A;



FIGS. 4E and 4F are enlarged views in cross-section of sealing surfaces of valve elements shown in FIG. 4B;



FIG. 5 is an enlarged view in cross-section of an alternate two-position valve assembly in the rod guide assembly from the shock absorber; illustrated in FIG. 2, the valve assembly being in a closed position;



FIGS. 6-9 are enlarged views in cross-section of alternate two-position valve assemblies having a ball valve element in the rod guide assembly from the shock absorber illustrated in FIG. 2;



FIG. 10 is an enlarged view in cross-section of an alternate two-position valve assembly from the shock absorber illustrated in FIG. 2, the valve assembly being in a closed position; and



FIGS. 11-14 represent enlarged views in cross-section of an alternate two-position valve assembly in a shock absorber.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. There is shown in FIG. 1 a vehicle incorporating a suspension system having shock absorbers in accordance with the present teachings, and which is designated generally by the reference numeral 10. Vehicle 10 has been depicted as a passenger car having front and rear axle assemblies. However, shock absorbers in accordance with the present teachings may be used with other types of vehicles or in other types of applications. Examples of these alternate arrangements include, but are not limited to, vehicles incorporating non-independent front and/or non-independent rear suspensions, vehicles incorporating independent front and/or independent rear suspensions or other suspension systems known in the art. Further, the term “shock absorber” as used herein is meant to refer to dampers in general and thus will include McPherson struts and other damper designs known in the art.


Vehicle 10 includes a rear suspension 12, a front suspension 14, and a body 16. Rear suspension 12 has a transversely extending rear axle assembly (not shown) adapted to operatively support a pair of rear wheels 18. The rear axle is attached to body 16 by means of a pair of shock absorbers 20 and by a pair of springs 22. Similarly, front suspension 14 includes a transversely extending front axle assembly (not shown) for operatively supporting a pair of front wheels 24. The front axle assembly is attached to body 16 by means of a pair of shock absorbers 26 and by a pair of springs 28. Shock absorbers 20, 26 serve to dampen the relative motion of the unsprung portion (i.e., rear and front suspensions 12, 14) with respect to the sprung portion (i.e., body 16) of vehicle 10.


Referring now to FIG. 2, shock absorber 20 is shown in greater detail. While FIG. 2 illustrates only shock absorber 20, it is to be understood that shock absorber 26 is substantially similar to shock absorber 20. Shock absorber 26 only differs from shock absorber 20 in the manner in which it is adapted to be connected to the sprung and unsprung masses of vehicle 10. Shock absorber 20 comprises a pressure tube 30, a piston assembly 32, a piston rod 34, a reserve tube 36, a base valve assembly 38, and a rod guide assembly 40.


Pressure tube 30 defines a working chamber 42. Piston assembly 32 is slidably disposed within pressure tube 30 and divides working chamber 42 into an upper working chamber 44 and a lower working chamber 46. A seal 48 is disposed between piston assembly 32 and pressure tube 30 to permit sliding movement of piston assembly 32 with respect to pressure tube 30 without generating undue frictional forces. Seal 48 also works to seal upper working chamber 44 from lower working chamber 46. Piston rod 34 is attached to piston assembly 32 and extends through upper working chamber 44 and through rod guide assembly 40. The end of piston rod 34 opposite to piston assembly 32 is adapted to be secured to the sprung mass of vehicle 10. Valving within piston assembly 32 controls the movement of fluid between upper working chamber 44 and lower working chamber 46 during movement of piston assembly 32 within pressure tube 30. Optionally, the digital valve assemblies described below can be positioned within the piston assembly 32, or the upper or lower rod guide assemblies 40, 64. Movement of piston assembly 32 with respect to pressure tube 30 causes a difference in the amount of fluid displaced in upper working chamber 44 and the amount of fluid displaced in lower working chamber 46. This is primarily because piston rod 34 extends only through upper working chamber 44 and not through lower working chamber 46. The difference in the amount of fluid displaced is known as the “rod volume”, which flows through base valve assembly 38. It should be understood, the base value assembly 38 can have any of the valves described below.


Reserve tube 36 surrounds pressure tube 30 to define a fluid reservoir chamber 50 located between tubes 30, 36. The bottom end of reserve tube 36 is closed by a base cup 52 which is adapted to be connected to the unsprung mass of vehicle 10. The upper end of reserve tube 36 may extend about rod guide assembly 40 or may be closed by an upper can 54, which in turn, is rolled-over rod guide assembly 40, as shown. Base valve assembly 38 is disposed between lower working chamber 46 and reservoir chamber 50 to control the flow of fluid between chambers 46, 50. When shock absorber 20 extends in length (i.e., when piston rod 34 moves upwardly and outwardly of upper can 54), an additional volume of fluid is needed in lower working chamber 46 due to the “rod volume” concept. Thus, fluid will flow from reservoir chamber 50 to lower working chamber 46 through base valve assembly 38. Conversely, when shock absorber 20 compresses in length (i.e., when piston rod 34 moves towards base valve assembly 38), an excess of fluid must be removed from lower working chamber 46 due to the “rod volume” concept. Thus, fluid will flow from lower working chamber 46 to reservoir chamber 50 through base valve assembly 38.


Referring now to FIG. 3, rod guide assembly 40 is illustrated in greater detail. Rod guide assembly 40 comprises a seal assembly 60, an upper rod guide 62, a lower rod guide 64, a circuit board 66, a retaining ring 68, and at least one digital valve assembly 70. Seal assembly 60 is assembled onto upper rod guide 62 so as to interface with upper can 54 and includes a check seal 72. Check seal 72 allows fluid to flow from the interface between piston rod 34 and an upper bushing 74 to reservoir chamber 50 through various fluid passages (not shown), but prohibits backwards fluid flow from reservoir chamber 50 to the interface between piston rod 34 and upper bushing 74. In one example, upper bushing 74 may be a Teflon coated bearing for slidably retaining piston rod 34.


Upper rod guide 62 may be initially assembled into upper can 54 or may be preassembled with lower rod guide 64 before installation into upper can 54. Upper can 54 may then be assembled to reserve tube 36 with pressure tube 30 assembled onto lower rod guide 64. In particular, pressure tube 30 and reserve tube 36 may be press-fit over upper can 54 and lower rod guide 64, respectively, so as to retain rod guide assembly 40 therewith.


Upper rod guide 62 may have a substantially tubular body 80 comprising a central aperture 82 extending therethrough and a concentric channel 84 extending from a lower surface 86 thereof. Upper rod guide 62 may be manufactured from a conventional forming process such as powder metal forming, metal injection molding (MIM), or other casting/forming processing. Upper rod guide 62 may accommodate seal assembly 60 at an upper portion of central aperture 82, while bushing 74 may be assembled at a lower portion of central aperture 82. Bushing 74 may be press-fit into upper rod guide 62 about central aperture 82 to accommodate the sliding motion of piston rod 34 while also providing a sealing surface for piston rod 34. Concentric channel 84 may be sized for receipt of at least circuit board 66 and may include a plurality of standoffs 88 for retaining circuit board 66 at a predefined location within upper rod guide 62.


Body 90 may have three distinct regions having consecutively smaller outer diameters for sealing against upper can 54, allowing for improved flow characteristics, and mating with pressure tube 30. For example, an upper region 94 of body 90 may have a first outer diameter correspondingly sized with an inner diameter of upper can 54. Upper region 94 may have a groove 96 extending about first outer diameter for receipt of a sealing ring or o-ring 98. A plurality of apertures 100 may extend through body 90 at upper region 94 so as to be concentrically arranged about central aperture 92. Apertures 100 may be sized for receipt of digital valve assemblies 70. Although four (4) digital valve assemblies 70 are shown for use in rod guide assembly 40, any number of digital valve assemblies 70 may be provided. The digital valve assemblies 70 are configured to restrict fluid flow, either in liquid or gas form.


Apertures 100 may extend from upper region 94 to a central region 102 of body 90. Central region 102 may have an irregularly shaped outer surface 104, smaller in relative diameter than upper region 94. Outer surface 104 may track the location and configuration of apertures 100. Notably, outer surface 104 may be correspondingly arranged to track any selected number of digital valve assemblies 70. Central region 102 may have a plurality of openings 106 corresponding to the location of each digital valve assembly 70 for fluid communication between each digital valve assembly 70 and reservoir chamber 50. Furthermore, additional openings 108 may extend between apertures 100 and central aperture 92 in order to provide an additional fluid flow path. A lower region 110 may extend from central region 102 and may be shaped as a collar for receipt of pressure tube 30, as previously described.


Lower rod guide 64 may also have a substantially tubular body 90 comprising a central aperture 92 extending therethrough. Like upper rod guide 62, lower rod guide 64 may be manufactured from a conventional forming process, such as, powder metal forming, metal injection molding (MIM), or other casting/forming processing. Lower rod guide 64 may accommodate an upper seal ring 112 and a lower bushing 114 at central aperture 92 substantially above openings 106 so as not to interfere with flow characteristics. Seal ring 112 and bushing 114 may be press-fit into lower rod guide 64 about central aperture 92 to accommodate for the sliding motion of piston rod 34 while also providing an additional seal for piston rod 34. Seal ring 112 may be a T-seal or slip ring acting as a secondary seal by absorbing any radial clearance. Bushing 114 may behave as a collar or ledge for retaining seal ring 112 within central aperture 92. Optionally, the digital valves described herein can be placed in apertures formed in the lower guide 64.


Circuit board 66 may be disposed within channel 84 of upper rod guide 62 and may abut standoffs 88 as previously discussed. Circuit board 66 may include a plurality of isolators 116 securely retained on a surface opposite standoffs 88 for abutting retaining ring 68 and for supporting circuit board 66. Circuit board 66 may be used to provide power to actuate digital valve assemblies 70. For example, each digital valve assembly 70 may be a two position valve assembly which has a different flow area in each of the two positions, as will be described in more detail below. Each digital valve assembly 70 may have wiring connections for moving between the two positions, where the wiring connections extend to circuit board 66.


Retaining ring 68 may be arranged between upper rod guide 62 and lower rod guide 64 for retaining the various digital valve assemblies 70. For example, retaining ring 68 may be press-fit into upper rod guide 62 as shown, or may be secured to either upper or lower rod guides 62, 64, such as with an adhesive. Retaining ring 68 may have a substantially tubular body 118 comprising a central aperture 120 and a plurality of concentrically arranged apertures 121 extending therethrough. Body 118 may be arranged within channel 84 of upper rod guide 62 and/or between upper rod guide 62 and lower rod guide 64. Apertures 121 may be aligned with apertures 100 in body 90 of lower rod guide 64, so as to allow the wiring connections of the digital valve assemblies 70 to extend therethrough.


With reference now to FIGS. 3-4F, each digital valve assembly 70 may comprise a spool 124, a guide member or sleeve 126, a spring 128, and a coil assembly 122. The valve assembly 70 has an outlet coupled to either the reservoir chamber or the upper working chamber, and an input or inlet flow path coupled to the other of the upper working chamber or the reservoir chamber. Spool 124 may have a substantially tubular body 132 defining three regions having varying outer diameters. For example, a first, upper region 134 may be sized so as to be slidingly received within an upper portion of sleeve 126, which is, in turn, arranged within aperture 100 of upper rod guide 62. A second, mid region 136 may be spaced apart from upper region 134 by a radial groove 138 defined in an annular surface. Mid-region 136 may have a slightly smaller outer diameter than that of upper region 134 and may be shaped so as to define a projection 140. A third, lower region 142 may be spaced apart from mid region 136 by a second radial groove 144. Radial groove 144 may be contoured to assist in movement of the digital valve assemblies 70, as will be described in more detail below. Lower region 142 may be sized so as to be slidingly received within a lower portion of sleeve 126, which has a slightly smaller outer diameter than that of mid region 136.


Sleeve 126 may have a first protrusion 146 adjacent radial groove 138 and a second protrusion 148 corresponding to radial groove 144 of spool 124. First protrusion 146 may have an inner diameter comparably sized to that of spool 124 at upper region 134 so as to allow metered flow between spool 124 and sleeve 126 when the valve is opened. In this configuration, the valve has both a slip seal and a face seal. The upper region 134 and first protrusion 146 form a slip seal when the valve is in a closed position. Second protrusion 148, however, may have a slightly smaller inner diameter than that of spool 124 at mid region 136. In this way, second protrusion 148 restricts movement of the mid region 136 of spool 124 and sealably contacts the mid region 136 to act as a face seal for minimizing or preventing leakage.


The spring 128 may bias the spool 124 from an open position as shown in FIG. 4A and a closed position as shown in FIG. 4B. In other words, spring 128 biases spool 124 away from coil assembly 122 and towards a sealing surface arranged within aperture 100. Spool 124 axially travels within sleeve 126 so as to vary spacing between upper region 134 and first protrusion 146 (see, e.g., FIGS. 4B and 4E) and between mid-region 136 and second protrusion 148 (see, e.g., FIGS. 4C and 4F).


As best seen in FIG. 4C, the upper region 134, first protrusion 146 and radial groove 138 form a first flow passage when the digital valve assembly 70 is in its open position. Optionally, the first protrusion 146 can define a groove 150 which can function as a metering edge to restrict the flow of fluid through the first flow passage and through the digital valve assembly 70.



FIG. 4D depicts the mid-region 136 and the second protrusion 148 which together with the radial groove 147 form a second flow passage. As with the first flow passage described above, the defined surfaces of these features function as a metering construct in a second flow passage.


As shown in FIGS. 4E and 4F, when current is removed from the coil, the spool 124 is moved from the open position to the closed position due to forces induced by the spring 128. This closes the first and second flow passages. The upper region 134 is moved relative to the first protrusion 146 to form a slip seal to restrict fluid flow. Simultaneously, the second protrusion 148 engages a bearing surface 149 on the mid-region 136 to form a face seal. The engagement of the second protrusion 148 with the bearing surface 149 limits the travel of the spool 124 with respect to the sleeve 126, and positions the spacing of the first protrusion 146 and the upper region 134.



FIG. 5 represents an enlarged view in cross-section of an alternate two-position valve assembly 270 in the rod-guide assembly from the shock absorber illustrated in FIG. 2. The valve assembly 270 has a spool 224 which moves in relation to an alternate sleeve 226 to engage a deformable valve seat 227. The spool 224 has an upper section 234 which is annularly supported by a cylindrical portion 236 of the sleeve 226. The spool 224 further has a lower region 238 separated by a radial groove 240. The radial groove 240 functions to allow fluid flow to axially stabilize the spool 224 within the sleeve 226.


The lower region 238 defines a conical bearing surface 242 which engages an edge 244 of an aperture 248 defined in the deformable valve seat 227. The spool 224 is biased toward the deformable valve seat 227 by a biasing spring 246. As described above, the application of current to the biasing coil pulls the conical bearing surface 242 away from the deformable valve seat 227. Flow of fluid can then occur through a metering orifice 229.



FIGS. 6-9 represent enlarged views in cross-section of alternate two-position valve assemblies 270 having a ball valve element 250 according to the present teachings. Each alternate digital valve 270 has a metering orifice 229 axially aligned with a centerline of a translatable spool 224. The spool 224 is radially supported by a sleeve 226 which defines an output orifice 255. The ball valve element 250 is disposed between a valve seat 227 and the spool 224. The spool 224 can be a monolithic magnetically reactive structure defining an axial flow path 254 which is configured to allow fluid within the valve to axial balance forces about the spool 224. Additionally, the spool 224 can define a conical ball element support member 256. The valve seat 227 can be a deformable surface defined within a bearing puck 260. The bearing puck 260 can define a through passage 262 axially aligned with the metering orifice 229, the spool 224 and the biasing spring 246. The digital valve assembly 270 can be in the form of a cartridge 266 having an exterior body 268 which has a bearing surface 276 which engages a sealing gasket 272 to seal the aperture 100. The exterior body 268 can define an aperture 274 which fluidly couples the digital valve 270 to the reservoir chamber 50.


As shown in FIGS. 7 and 8, the spool 224 can be formed of several pieces joined together to minimize machining. The first member 280 is a magnetically reactive base 282 which functions to apply forces to the generally hollow force applying member 284 in response to a magnetic field generated by the coil. The generally hollow force applying member 284 can be a hollow tube having a first circular end 285 which engages the ball valve element 250. The hollow force applying member 284 and magnetically active base 282 can define through passages 286 which allow fluid flow therethrough to balance pressures within the digital valve 270, and maintain axial stability.



FIG. 9 depicts an alternate digital valve assembly 270 in an open configuration. In this configuration, current is applied to the coil assembly 122 which pulls the spool 224 toward the coil assembly 122 against the force generated by the biasing spring 246. Fluid flow through the metering orifice 229 displaces the ball valve element 250 away from the conical valve seat 227. The fluid is then allowed to flow through the digital valve 270 and exit orifice into the reservoir chamber 50. A circular bearing surface 290 in the spool 224 restricts axial and radial movement of the ball valve element 250 within the digital valve assembly 70.


As seen in FIG. 10, the spool 224 can have a planar bearing 292 surface which functions to sealably engage against a planar bearing surface 294 defined on a bearing puck 260. As shown, the biasing spring 246 presses the spool planar bearing surface 292 against the planar bearing surface 294 of the puck. Force balancing passages 293 are formed within both the spool 224 and sleeve 226.


Digital valve assembly 70 can be kept in the second position by continuing to supply a power signal to each coil assembly 122 or by providing means for retaining digital valve assemblies 70 in the second position and discontinuing the supply of power to coil assemblies 122. The means for retaining digital valve assembly 70 in the closed position can include mechanical means, magnetic means or other means known in the art. Alternatively, the digital valve assembly disclosed herein can have an alternate biasing spring which biases the spools in a normally open configuration.


Once in the second position, movement to the first position can be accomplished by terminating power to each coil assembly 122 or by reversing the current or reversing the polarity of the power supplied to each coil assembly 122 to overcome the retaining spring. The amount of flow through each digital valve assembly 70 has discrete settings for flow control in both the first position and the second position. While the present disclosure is described using multiple digital valve assemblies 70, it is within the scope of the disclosure to use any number of digital valve assemblies 70.



FIGS. 11-14 represent enlarged views in cross-section of alternate two-position digital valve assemblies 370 having an alternate spool 224 and sleeve 226 according to the present teachings. Each alternate digital valve 370 has a metering orifice 229 axially aligned with a centerline of the translatable spool 224. The spool 224 is radially supported by the sleeve 226 which defines an output orifice 255. It should be noted the sleeve 226 can be a separate member or integrally formed within the guide assembly. A first end 300 of the spool 224 is disposed distal to a valve seat 227 and a radially supported sidewall portion 298 of spool 224. The spool 224 can be a monolithic magnetically reactive structure defining an axial flow path 254 which is configured to allow fluid within the valve to axial balance forces about the spool 224 or may be multi-component as described above.


The first end 300 of the spool 224 has a segment 308 (FIG. 12) that defines a portion of a toroidal cavity 302 which functions as a fluid path when the spool is moved from a seated to an unseated position. As shown in FIGS. 11-13, when the spool 224 is biased into its normally closed or its seated position, fluid is prevented from flowing through the metering orifice 229. Alternatively, the digital valve 370 can be biased into a normally open configuration. The valve seat 227 proximate to toroidal cavity 302 can be a deformable surface defined within a bearing puck 260. The bearing puck 260 can define a through passage 262 axially aligned with the metering orifice 229, the spool 224 and the biasing spring 246. The bearing puck 260 through passage 262 can be disposed within the toroidal cavity 302 to allow engagement therewith. Alternatively, flow through the through passage 262 can meter the flow adjacent to the valve seat 227.


The spool 224 can be formed of a single monolithic machined piece having a varying diameter. A first portion 304 is a magnetically reactive base 306 which functions to apply forces to the spool 224 in response to a magnetic field generated by the coil assembly 122. The spool 224 can be a hollow tube defining the partial toroidal cavity 302 on an exterior spool surface 310 which engages the through passage 262 of the bearing puck 260. As described above, the spool 224 and magnetically reactive base 306 can define through passages which allow fluid flow therethrough to balance pressures within the digital valve 370, and maintain axial stability.



FIG. 14 depicts the alternate digital valve 370 in an open configuration. In this configuration, current is applied to the coil assembly 122 which counteracts the biasing spring 246 to pull the spool 224 toward the coil assembly 122. Fluid flow through the metering orifice 229 and toroidal cavity 302 is allowed at the circular or toroidal valve seat 227. The interaction of the toroidal cavity 302 bearing surface with the bearing surface of the circular or annular valve seat 227 defined by a sleeve protrusion 226a forms a face seal. It should be noted that, depending on design, the toroidal cavity 302 may act as a face seal on either side of the bearing puck 260. Upon actuation or deactuation of the coil assembly 122, the spool 224 is displaced, allowing fluid through the metering orifice 229 and toroidal cavity 302. The fluid is then allowed to flow through the digital valve 370 and exit orifice 312 into the reservoir chamber 50. A bearing surface 290 in the toroidal cavity 302 of the spool 224 restricts axial movement of the spool 224. This bearing surface 290 can be flat or curved as well as complementary in shape to the shape of the bearing puck 260.


It should be understood that when multiple digital valve assemblies 70 are used, the total flow area through the plurality of digital valve assemblies 70 can be set at a specific number of total flow areas depending on the position of each individual digital valve assembly 70. The specific number of total flow areas can be defined as being 2n flow areas where n is the number of digital valve assemblies 70. For example, if using four digital valve assemblies 70, the number of total flow areas available would be 24 or sixteen (16) flow areas. Further, the digital valve assemblies are useable both in the lower and upper guide assemblies, piston rod assemblies and/or base valve assemblies.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.

Claims
  • 1. A shock absorber having a rod guide assembly for housing at least one digital valve assembly, the shock absorber comprising: a pressure tube defining upper and lower working chambers;a reserve tube disposed around the pressure tube;a reservoir chamber being defined between the pressure tube and the reserve tube;a guide member disposed in the rod guide assembly and forming a sleeve, and having an inlet in communication with one of the upper working chamber and the reservoir chamber, defined by the shock absorber and an outlet in communication with the other of the upper working chamber and the reservoir chamber, one of the inlet and the outlet being formed adjacent a distal end of the sleeve to open directly into the reservoir chamber;a digital valve assembly having a spool movably disposed within the guide member between first and second positions, the spool movable between the first position, where the spool and the guide member form a face seal, and the second position to establish a flow path from the one of the upper working chamber and the reservoir chamber into the digital valve assembly;the spool having a side face having a toroidal groove formed with an annular surface facing toward the sleeve, an edge of the toroidal groove forming a seal with the guide member when the spool is in the first position, and wherein the toroidal groove helps to form a portion of a flow path around the spool when the spool is moved into the second position;a coil assembly disposed adjacent the spool configured to make the spool move between the first and second positions.
  • 2. The shock absorber according to claim 1, wherein the shock absorber further comprises a second valve assembly disposed between the lower working chamber and the reservoir chamber.
  • 3. A shock absorber having a rod guide assembly for housing at least one digital valve assembly, the digital valve assembly comprising: a guide member disposed in the rod guide assembly and in fluid communication with an upper working chamber and a reservoir chamber defined by the shock absorber;the guide member further forming a sleeve;a digital valve assembly disposed within the guide member, the sleeve defining an inlet flow path in communication with one of the upper and reservoir chambers and an outlet in communication with the other of the upper and reservoir chambers, at least one of the inlet and the outlet formed at a distal end of the sleeve and opening directly into the reservoir chamber;a spool having a toroidal groove with an annular surface on a sidewall bearing surface thereof, and being movably disposed within the sleeve, the annular surface of the spool facing toward the sleeve, and the spool being movable from a first position abutting a surface adjacent the inlet flow path so as to form a face seal and a second position to establish a flow path from the one of the upper and reservoir chambers into the digital valve assembly using the toroidal groove as part of the flow path; anda coil assembly disposed adjacent the spool for moving the spool between the first and second positions.
  • 4. The shock absorber according to claim 3, wherein the sleeve has a first protrusion defining a first metering surface and wherein the sidewall bearing surface is configured to move in relation to the first metering surface to form the face seal.
  • 5. The shock absorber according to claim 4, wherein the toroidal cavity has the annular surface defined about the first protrusion.
  • 6. The shock absorber according to claim 4, wherein the spool moves in relation to the sleeve from the first position to the second position in response to a signal sent to the coil assembly, and wherein travel of the spool with respect to the sleeve is limited by interaction of the first surface with the first metering surface.
  • 7. A shock absorber having a rod guide assembly for housing at least one digital valve assembly, the digital valve assembly comprising: a guide member disposed in the rod guide assembly and in fluid communication with an upper working chamber and a reservoir chamber defined by the shock absorber;the guide member forming a sleeve;a digital valve assembly disposed within the sleeve, the sleeve defining an inlet flow path in communication with one of the upper and reservoir chambers and an outlet in communication with the other of the upper and reservoir chambers, the sleeve defining an annular protrusion having an annular protrusion bearing surface, and one of the inlet and the outlet opening directly into the reservoir chamber;
  • 8. The shock absorber according to claim 7, wherein the annular toroidal bearing surface of the spool overlaps the annular protrusion of the sleeve, the annular toroidal bearing surface engaging the annular protrusion bearing surface when the spool is at the first position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/786,684, filed on Mar. 15, 2013. The entire disclosure of the above application is incorporated herein by reference.

US Referenced Citations (292)
Number Name Date Kind
2409349 Focht Oct 1946 A
2473043 Whisler, Jr. Jun 1949 A
3896908 Petrak Jul 1975 A
3945474 Palmer Mar 1976 A
4317105 Sinha et al. Feb 1982 A
4352417 Stinson Oct 1982 A
4468050 Woods et al. Aug 1984 A
4552324 Hrusch Nov 1985 A
4564214 Tokunaga et al. Jan 1986 A
4589528 Axthammer et al. May 1986 A
4591186 Ashiba May 1986 A
4696489 Fujishiro et al. Sep 1987 A
4723640 Beck Feb 1988 A
4726453 Obstfelder et al. Feb 1988 A
4749070 Moser Jun 1988 A
4776437 Ishibashi et al. Oct 1988 A
4788489 Kobayashi et al. Nov 1988 A
4846317 Hudgens Jul 1989 A
4850460 Knecht et al. Jul 1989 A
4867476 Yamanaka et al. Sep 1989 A
4872537 Warner Oct 1989 A
4892328 Kurtzman et al. Jan 1990 A
4909536 Hale Mar 1990 A
4913457 Hafner et al. Apr 1990 A
4943083 Groves Jul 1990 A
4958706 Richardson et al. Sep 1990 A
4969662 Stuart Nov 1990 A
4973854 Hummel Nov 1990 A
4984819 Kakizaki et al. Jan 1991 A
4986393 Preukschat et al. Jan 1991 A
4988967 Miller et al. Jan 1991 A
5038613 Takenaka et al. Aug 1991 A
5058715 Silberstein Oct 1991 A
5067743 Kokubo et al. Nov 1991 A
5092626 Athanas et al. Mar 1992 A
5106053 Miller et al. Apr 1992 A
5123671 Driessen et al. Jun 1992 A
5133434 Kikushima et al. Jul 1992 A
5133574 Yamaoka et al. Jul 1992 A
5143185 Klein et al. Sep 1992 A
5154442 Milliken Oct 1992 A
5160162 Mouri et al. Nov 1992 A
5189614 Mitsuoka et al. Feb 1993 A
5200895 Emura et al. Apr 1993 A
5242190 Morris Sep 1993 A
5285878 Scheffel et al. Feb 1994 A
5293968 Schuelke et al. Mar 1994 A
5299488 Kadlicko et al. Apr 1994 A
5337863 Lizell Aug 1994 A
5350187 Shinozaki Sep 1994 A
5350983 Miller et al. Sep 1994 A
5360089 Nakamura et al. Nov 1994 A
5360230 Yamada et al. Nov 1994 A
5363945 Lizell et al. Nov 1994 A
5383679 Nakamura et al. Jan 1995 A
5390121 Wolfe Feb 1995 A
5396973 Schwemmer et al. Mar 1995 A
5404973 Katoh et al. Apr 1995 A
5430648 Sasaki Jul 1995 A
5435421 Beck Jul 1995 A
5439085 Woessner Aug 1995 A
5485417 Wolf et al. Jan 1996 A
5487455 Feigel Jan 1996 A
5488556 Sasaki Jan 1996 A
5497325 Mine Mar 1996 A
5497862 Hoya Mar 1996 A
5532921 Katsuda Jul 1996 A
5570762 Jentsch et al. Nov 1996 A
5577579 Derr Nov 1996 A
5590898 Williams et al. Jan 1997 A
5597054 Nagai et al. Jan 1997 A
5632503 Raad et al. May 1997 A
5638275 Sasaki et al. Jun 1997 A
5653315 Ekquist et al. Aug 1997 A
5655633 Nakadate et al. Aug 1997 A
5656315 Tucker et al. Aug 1997 A
5657840 Lizell Aug 1997 A
5690195 Kruckemeyer et al. Nov 1997 A
5725239 de Molina Mar 1998 A
5775470 Feigel Jul 1998 A
5803482 Kim Sep 1998 A
5833036 Gillespie Nov 1998 A
5845672 Reuter et al. Dec 1998 A
5860497 Takahashi Jan 1999 A
5878851 Carlson et al. Mar 1999 A
5890081 Sasaki Mar 1999 A
5913391 Jeffries et al. Jun 1999 A
5934421 Nakadate et al. Aug 1999 A
5937976 Grundei Aug 1999 A
5950775 Achmad Sep 1999 A
5967268 de Molina et al. Oct 1999 A
5987369 Kwak et al. Nov 1999 A
5996745 Jones, Jr. et al. Dec 1999 A
6003644 Tanaka Dec 1999 A
6036500 Francis et al. Mar 2000 A
6092011 Hiramoto Jul 2000 A
6095489 Kaneko et al. Aug 2000 A
6105740 Marzocchi et al. Aug 2000 A
6109400 Ayyildiz et al. Aug 2000 A
6135250 Forster et al. Oct 2000 A
6155391 Kashiwagi et al. Dec 2000 A
6213262 Bell Apr 2001 B1
6273224 Achmad Aug 2001 B1
6296091 Hamilton Oct 2001 B1
6298958 Hwang Oct 2001 B1
6302248 Nakadate Oct 2001 B1
6321888 Reybrouck et al. Nov 2001 B1
6343677 Bell Feb 2002 B2
6427986 Sakai et al. Aug 2002 B1
6460664 Steed et al. Oct 2002 B1
6464053 Hoebrechts Oct 2002 B1
6496761 Ulyanov et al. Dec 2002 B1
6533294 Germain et al. Mar 2003 B1
6588726 Osterhart et al. Jul 2003 B2
6616124 Oliver et al. Sep 2003 B2
6651787 Grundei Nov 2003 B2
6655512 Moradmand et al. Dec 2003 B2
6672436 Keil et al. Jan 2004 B1
6707290 Nyce et al. Mar 2004 B2
6708803 Jensen Mar 2004 B2
6782980 Nakadate Aug 2004 B2
6814193 Grundei Nov 2004 B2
6851528 Lemieux Feb 2005 B2
6879898 Ghoneim et al. Apr 2005 B2
6904344 LaPlante et al. Jun 2005 B2
6959797 Mintgen et al. Nov 2005 B2
6964325 Maes Nov 2005 B2
6978872 Turner Dec 2005 B2
7032912 Nicot et al. Apr 2006 B2
7168709 Niwa et al. Jan 2007 B2
7214103 Kim et al. May 2007 B2
7234574 Matsunaga et al. Jun 2007 B2
7234707 Green et al. Jun 2007 B2
7273138 Park Sep 2007 B2
7286919 Nordgren et al. Oct 2007 B2
7318595 Lamela et al. Jan 2008 B2
7347307 Joly Mar 2008 B2
7374028 Fox May 2008 B2
7389994 Trudeau et al. Jun 2008 B2
7413062 Vandewal Aug 2008 B2
7416189 Wilde et al. Aug 2008 B2
7475538 Bishop Jan 2009 B2
7493995 Sas et al. Feb 2009 B2
7604101 Park Oct 2009 B2
7611000 Naito Nov 2009 B2
7621538 Nordmeyer et al. Nov 2009 B2
7628253 Jin et al. Dec 2009 B2
7644933 Brookes et al. Jan 2010 B2
7654369 Murray et al. Feb 2010 B2
7654370 Cubalchini, Jr. Feb 2010 B2
7680573 Ogawa Mar 2010 B2
7722405 Jaklin et al. May 2010 B2
7743896 Vanhees et al. Jun 2010 B2
7770983 Park Aug 2010 B2
7775333 Or et al. Aug 2010 B2
7849983 St. Clair et al. Dec 2010 B2
7878311 Van Weelden Feb 2011 B2
7896311 Jee Mar 2011 B2
7912603 Stiller et al. Mar 2011 B2
7926513 Ishibashi et al. Apr 2011 B2
7931282 Kolp et al. Apr 2011 B2
7942248 St. Clair et al. May 2011 B2
7946163 Gartner May 2011 B2
7946399 Masamura May 2011 B2
7967116 Boerschig Jun 2011 B2
7967117 Abe Jun 2011 B2
7992692 Lee et al. Aug 2011 B2
7997394 Yamaguchi Aug 2011 B2
8056392 Ryan et al. Nov 2011 B2
8075002 Pionke et al. Dec 2011 B1
8113521 Lin et al. Feb 2012 B2
8116939 Kajino et al. Feb 2012 B2
8132654 Widla et al. Mar 2012 B2
8136644 Sonsterod Mar 2012 B2
8160774 Li et al. Apr 2012 B2
8214106 Ghoneim et al. Jul 2012 B2
8267382 Yazaki et al. Sep 2012 B2
8275515 Wright et al. Sep 2012 B2
8317172 Quinn et al. Nov 2012 B2
8393446 Haugen Mar 2013 B2
8430217 Hennecke et al. Apr 2013 B2
8525453 Ogawa Sep 2013 B2
8567575 Jung et al. Oct 2013 B2
8616351 Roessle et al. Dec 2013 B2
8666596 Arenz Mar 2014 B2
8684367 Haugen Apr 2014 B2
8695766 Yamashita et al. Apr 2014 B2
8794405 Yamashita et al. Aug 2014 B2
8844687 Yu et al. Sep 2014 B2
8899391 Yamasaki et al. Dec 2014 B2
8948941 Ogawa Feb 2015 B2
9027937 Ryan et al. May 2015 B2
9150077 Roessle et al. Oct 2015 B2
9163691 Roessle Oct 2015 B2
9188186 Hoven et al. Nov 2015 B2
9217483 Dunaway et al. Dec 2015 B2
9399383 Blankenship et al. Jul 2016 B2
20020133277 Koh Sep 2002 A1
20030164193 Lou Sep 2003 A1
20030192755 Barbison et al. Oct 2003 A1
20040090020 Braswell May 2004 A1
20040154887 Nehl et al. Aug 2004 A1
20040199313 Dellinger Oct 2004 A1
20050001472 Bale et al. Jan 2005 A1
20050029063 Neumann Feb 2005 A1
20050056502 Maes Mar 2005 A1
20050056504 Holiviers Mar 2005 A1
20050061593 DeGronckel et al. Mar 2005 A1
20050085969 Kim Apr 2005 A1
20050113997 Kim May 2005 A1
20050173849 Vandewal Aug 2005 A1
20060038149 Albert et al. Feb 2006 A1
20060124415 Joly Jun 2006 A1
20060219503 Kim Oct 2006 A1
20070034466 Paesmans et al. Feb 2007 A1
20070051574 Keil et al. Mar 2007 A1
20070255466 Chiao Nov 2007 A1
20080054537 Harrison Mar 2008 A1
20080243336 Fitzgibbons Oct 2008 A1
20080250844 Gartner Oct 2008 A1
20080264743 Lee et al. Oct 2008 A1
20080277218 Fox Nov 2008 A1
20090071772 Cho et al. Mar 2009 A1
20090078517 Maneyama et al. Mar 2009 A1
20090084647 Maneyama et al. Apr 2009 A1
20090132122 Kim et al. May 2009 A1
20090192673 Song et al. Jul 2009 A1
20090200125 Sonsterod Aug 2009 A1
20090200503 Park Aug 2009 A1
20100001217 Jee et al. Jan 2010 A1
20100044172 Jee et al. Feb 2010 A1
20100066051 Haugen Mar 2010 A1
20100109276 Marjoram et al. May 2010 A1
20100138116 Coombs Jun 2010 A1
20100163354 Braun Jul 2010 A1
20100181154 Panichgasem Jul 2010 A1
20100191420 Honma et al. Jul 2010 A1
20100211253 Morais Dos Santos et al. Aug 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100301578 Noda et al. Dec 2010 A1
20100326267 Hata Dec 2010 A1
20110035091 Yamamoto Feb 2011 A1
20110056780 St.Clair et al. Mar 2011 A1
20110056783 Teraoka et al. Mar 2011 A1
20110079475 Roessle Apr 2011 A1
20110101579 Polakowski et al. May 2011 A1
20110153157 Klank et al. Jun 2011 A1
20110198172 Whan Aug 2011 A1
20110214956 Marking Sep 2011 A1
20110240424 Beck Oct 2011 A1
20110298399 Ogawa et al. Dec 2011 A1
20120018263 Marking Jan 2012 A1
20120048665 Marking Mar 2012 A1
20120073918 Nishimura et al. Mar 2012 A1
20120073920 Yamasaki et al. Mar 2012 A1
20120181126 De Kock Jul 2012 A1
20120186922 Battlogg et al. Jul 2012 A1
20120228072 Mangelschots et al. Sep 2012 A1
20120305349 Murakami et al. Dec 2012 A1
20130081913 Nowaczyk et al. Apr 2013 A1
20130090808 Lemme et al. Apr 2013 A1
20130228401 Bender et al. Sep 2013 A1
20130234379 Panichgasem Sep 2013 A1
20130263943 Forster Oct 2013 A1
20130275003 Uchino et al. Oct 2013 A1
20130299291 Ewers et al. Nov 2013 A1
20130313057 Tsukahara et al. Nov 2013 A1
20130328277 Ryan et al. Dec 2013 A1
20130340865 Manger et al. Dec 2013 A1
20130341140 Nakajima Dec 2013 A1
20130341842 Weber Dec 2013 A1
20130345933 Norton et al. Dec 2013 A1
20140102842 Roessle et al. Apr 2014 A1
20140125018 Brady et al. May 2014 A1
20140202808 Spyche, Jr. et al. Jul 2014 A1
20140216871 Shibahara Aug 2014 A1
20140231200 Katayama Aug 2014 A1
20140238797 Blankenship et al. Aug 2014 A1
20140239602 Blankenship et al. Aug 2014 A1
20140244112 Dunaway et al. Aug 2014 A1
20140260233 Giovanardi et al. Sep 2014 A1
20140262648 Roessle Sep 2014 A1
20140262652 Roessle et al. Sep 2014 A1
20140262654 Roessle et al. Sep 2014 A1
20140265169 Giovanardi et al. Sep 2014 A1
20140265170 Giovanardi et al. Sep 2014 A1
20140284156 Kim Sep 2014 A1
20140291090 Shimasaki Oct 2014 A1
20140297116 Anderson et al. Oct 2014 A1
20140297117 Near et al. Oct 2014 A1
20140303844 Hoffmann et al. Oct 2014 A1
20150088379 Hirao Mar 2015 A1
Foreign Referenced Citations (59)
Number Date Country
1094855 Nov 2002 CN
1267611 Aug 2006 CN
101025213 Aug 2007 CN
100381728 Apr 2008 CN
101229765 Jul 2008 CN
101509535 Aug 2009 CN
201575099 Sep 2010 CN
201575100 Sep 2010 CN
101857035 Oct 2010 CN
201636258 Nov 2010 CN
201705852 Jan 2011 CN
102032306 Apr 2011 CN
102076988 May 2011 CN
102109024 Jun 2011 CN
102345700 Feb 2012 CN
103154562 Jun 2013 CN
103168183 Jun 2013 CN
103244495 Aug 2013 CN
203186023 Sep 2013 CN
103429929 Dec 2013 CN
103702888 Apr 2014 CN
203548687 Apr 2014 CN
103946095 Jul 2014 CN
104074909 Oct 2014 CN
3406875 Sep 1985 DE
3518858 Nov 1985 DE
3432465 Mar 1986 DE
3518327 Nov 1986 DE
3928343 Feb 1991 DE
4041619 Jun 1992 DE
19853277 May 2000 DE
10025399 Dec 2000 DE
10238657 Mar 2004 DE
112007002377 Aug 2009 DE
1588072 Oct 2005 EP
1 746 302 Jan 2007 EP
2105330 Sep 2009 EP
2 123 922 Feb 1984 GB
2154700 Sep 1985 GB
S60138044 Sep 1985 JP
61125907 Jun 1986 JP
S61266842 Nov 1986 JP
62-253506 Nov 1987 JP
S6467408 Mar 1989 JP
H0550827 Mar 1993 JP
06-026546 Feb 1994 JP
07-113434 May 1995 JP
7056311 Jun 1995 JP
H0899514 Apr 1996 JP
08-260747 Oct 1996 JP
09-217779 Aug 1997 JP
200267650 Mar 2002 JP
2002-349630 Dec 2002 JP
2008106783 May 2008 JP
2009002360 Jan 2009 JP
201198683 May 2011 JP
2011236937 Nov 2011 JP
9218788 Oct 1992 WO
2010029133 Mar 2010 WO
Non-Patent Literature Citations (6)
Entry
Search Report and Written Opinion dated Aug. 19, 2014 in corresponding PCT Application No. PCT/US2014/028136 (12 pages).
Office Action from German Patent Office for corresponding German Application No. 11 2010 003 954.2 dated Dec. 9, 2015, 19 pages.
Search Report and Written Opinion dated Jun. 20, 2014 in corresponding PCT Application No. PCT/US2014/019534 (12pp).
Chinese Office Action for corresponding Chinese Patent Application No. 201410208616.8 dated Apr. 15, 2016, 15 pages.
Search Report and Written Opinion dated Jun. 19, 2014 in corresponding PCT Application No. PCT/US2014/019400 (12 pages).
International Search Report and Written Opinion dated Sep. 21, 2015 in corresponding PCT Application No. PCT/US2015/035568 (9 pages).
Related Publications (1)
Number Date Country
20140262654 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61786684 Mar 2013 US