The present invention relates to a two-setting, variable-eccentricity vane pump. More specifically, the pump according to the present invention provides for pumping lubricating oil to an internal combustion engine, to which specific reference is made in the following description purely by way of example.
As is known, variable-eccentricity vane pumps have only one delivery pressure setting, which means the pump, particularly at high speed, supplies oil at pressures higher than those actually required by the engine.
To eliminate this drawback, devices have been designed to substantially continuously adjust operation of the pump. Though successful in solving the above problem, such devices employ electronic central control units which make them both expensive and fragile.
It is an object of the present invention to provide a pump designed to provide a straightforward, low-cost solution to the problems of the known state of the art.
According to the present invention, there is provided a variable-eccentricity vane pump comprising a rotor fitted with blades; an adjusting ring housing said rotor; and elastic means for forcing said adjusting ring into a maximum-eccentricity position with respect to said rotor; said pump being characterized by comprising a first sliding member connected to said adjusting ring and which slides in fluidtight manner inside a first chamber connected hydraulically to a delivery conduit of the pump; and a second sliding member connected to said adjusting ring and which slides in fluidtight manner inside a second chamber connected hydraulically to a delivery conduit of the pump; said first sliding member being connected to said adjusting ring on the opposite side to said elastic means and said second sliding member; and said second chamber being smaller than said first chamber, and comprising a drain opening formed in a lateral wall on which said second sliding member slides.
A non-limiting embodiment of the invention will be described by way of example with reference to the accompanying drawing, which shows a cross section, with parts removed for clarity, of the pump according to the present invention.
Number 1 in the accompanying drawing indicates as a whole the variable-eccentricity vane pump according to the present invention. Pump 1 comprises, in known manner, a main body 2 having a cavity 3; an adjusting ring 4 housed inside cavity 3, in which it can translate as described below; and a rotor 5 fitted with blades (not shown), housed inside adjusting ring 4, and having an axis of rotation fixed with respect to main body 2.
As is known, by varying the eccentricity between rotor 5 and adjusting ring 4, the delivery of pump 1 can be regulated as required by a user device (not shown) located downstream from pump 1 and defined, in the example shown, by an internal combustion engine.
As shown in the drawing, pump 1 comprises a preloaded spring 6 compressed between a wall 7a of a seat 7 formed in main body 2, and a wall 8 defined on an outer surface 4a of adjusting ring 4. Positioned as described above, spring 6 forces adjusting ring 4 into a maximum-eccentricity position with respect to rotor 5 and, hence, into a condition in which oil delivery by pump 1 is maximum.
As shown in the drawing, pump 1 comprises a first chamber 9 and a second chamber 10, both formed in main body 2 and facing each other inside cavity 3. Each chamber 9, 10 is connected to a conduit (not shown) for feeding oil from pump 1 to the engine. More specifically, chamber 10 is connected to an oil tank (not shown) by a drain opening 11 formed in a lateral wall 10a, and is formed in the same part of main body 2 as seat 7 of spring 6.
As shown in the drawing, pump 1 comprises a first sliding member 12 and a second sliding member 13, both formed in one piece with adjusting ring 4, and which slide in fluidtight manner inside first chamber 9 and second chamber 10 respectively. More specifically, each sliding member 12, 13 has a respective work surface 12a, 13a, on which the pressure of the oil supplied by the pump and present inside respective chamber 9, 10 exerts a force to move sliding member 12, 13.
In actual use, starting with rotor 5 and adjusting ring 4 set to the maximum-eccentricity position by spring 6, the speed of the rotor is increased, thus increasing the pressure of the oil supplied by the pump. The increase in oil pressure produces an increase in pressure in chamber 9, so that force is exerted on surface 12a of sliding member 12. In chamber 10, on the other hand, drain opening 11 prevents the pressure from increasing, so that no force is exerted on sliding member 13.
In the above condition, when the force of the pressure on surface 12a exceeds the opposing force of spring 6, adjusting ring 4 is moved in the direction indicated by arrow F, thus reducing the eccentricity with respect to rotor 5.
As adjusting ring 4 moves, a position is eventually reached in which sliding member 13 closes drain opening 11.
In the above condition, to move adjusting ring 4 further, the pressure in chamber 9 must generate enough force to counteract not only the force of spring 6 but also the force exerted on surface 13a by the pressure generated in chamber 10, which is smaller than chamber 9. In chamber 10, in fact, the pressure tends to increase, on account of oil drainage through opening 11 being prevented.
In other words, as the pressure of the oil supplied by pump 1 increases, adjusting ring 4 moves in the direction of arrow F according to two different, consecutive laws. That is, the movement of adjusting ring 4 is first opposed solely by spring 6, and then also by the force exerted on surface 13a by the oil pressure in chamber 10.
The pump according to the present invention provides for achieving oil supply as close as possible to the actual demand of the engine, and, at the same time, unlike known solutions, is extremely straightforward and cheap to produce.
Number | Date | Country | Kind |
---|---|---|---|
TO2005A000543 | Aug 2005 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB06/02085 | 8/1/2006 | WO | 00 | 10/15/2009 |