This application claims priority to and all the advantages of International Patent Application No. PCT/FR2008/001781, filed on Dec. 18, 2008, which claims priority to French Patent Application No. FR 08/00024, filed on Jan. 3, 2008.
The invention relates to a three-way valve with two flaps, and this invention has arisen out of a problem with the EGR loop of a motor vehicle internal combustion engine, comprising, with reference to the attached
The three-way valve could equally be located on the cold side of the engine, with an inlet downstream of the turbocharger compressor and the two outlets connected respectively to the exhaust and to the cooler of the EGR loop.
The purpose of the EGR loop is to reduce the emissions of nitrogen dioxide by reducing the combustion temperature, by slowing the combustion of the oxidant mixture and absorbing some of the energy. The cooler in the EGR loop is there to drop the combustion temperature at high speed (high load).
Turning our attention back to the three-way valve positioned on the intake manifold side, the cold side, there are a number of conceivable modes for operating the three-way valve and therefore the engine: the engine can receive only fresh air, without any recirculated exhaust gas. The engine can receive fresh air mixed with some of the exhaust gases, the pressure difference between the exhaust and the intake sides of the engine being enough to recirculate the exhaust gases. When the pressure difference is not high enough to recirculate the exhaust gases and provide the correct EGR ratio, a back pressure can be created by throttling the exhaust path downstream of the EGR loop in order thus to force some of the exhaust gases toward the engine intake path. Because of its complexity, however, this solution is not very satisfactory and it is preferable to use the EGR loop in the following way:
The present invention relates firstly, but not exclusively, to a three-way valve with two flaps so that the EGR loop can be used in the way defined hereinabove and which is as cost-effective and compact as possible. Naturally, the Applicant Company does not intend to limit the application of the valve of the invention to the use expounded hereinabove of the EGR loop, and this is why the invention will, in general, relate to any three-way valve with two flaps or shutters that have to be actuated with a temporal phase shift. In this case, the case mentioned hereinabove, the two flaps are positioned in the two inlet paths of the valve, in the other, in the two outlet paths.
Thus, the invention relates to a three-way valve with two flaps respectively positioned in two of the three paths of the valve and comprising means for controlling and actuating the flaps to make them pivot from one to the other of two positions in which the paths are either open or closed, characterized in that single control means are provided for both flaps and there are actuating means designed to be controlled by the single control means and to actuate the two flaps with a temporal phase shift.
For preference, the control means comprise a dc motor
In the preferred embodiment of the valve of the invention, the flaps are positioned in its two inlet paths, the valve then being an EGR loop valve for the cold side, connected to the intake manifold of a motor vehicle internal combustion engine.
The invention will be better understood from the following description of a mode of use of the three-way valve of the invention and of the three-way valve itself, with reference to the attached drawing in which:
a, 1b, 1c, 1d illustrate the four modes of use of the three-way valve of the EGR loop, the special use of which is described below;
a, 2b, 2c represent the curves of air flow rate (1a), of the natural flow rate of EGR exhaust gases (dgn) and of the flow rate, forced according to the method of use, of EGR exhaust gases (dgf), as a function of the angular positions (α) of the corresponding flaps;
The EGR valve 1 of
The valve 1 here is a valve with two flaps, one flap 5 in the air inlet path 2 and one flap 6 in the gas inlet path 3.
First of all, the air flap 5 is in an angular position (0°) that allows a maximum air flow rate through the path 2 and the gas inlet flap 6 is in an angular position (90°) that shuts off the path 3.
Then, without the air flap 5 pivoting, the gas inlet flap 6 begins to pivot in order progressively to open the path 3 to the EGR exhaust gases (
This is the start of region III of the curves 2, the exhaust gas flow rate curve passing through a point of inflexion and continuing to rise.
This region III continues until the gas flap 6 reaches the angular position ◯° in which the gas inlet path 3 is wide open and the air flap is in the angular position (90°) in which the air inlet path 2 is shut off.
In order to drive the three-way EGR valve in the way defined hereinabove, this three-way valve has the drivetrain that will now be described with reference to
The drivetrain of the three-way valve 1 comprises a gear set here extending between a DC motor 7 and two shafts 51, 61 that turn the air flap 5 and the gas flap 6 respectively. The two shafts 51, 61 run parallel to one another.
Secured to the shaft 14 of the motor 7 is a drive pinion 8 that drives an intermediate gear wheel 9 bearing a peripheral tooth set 10 and a central tooth set 11.
The peripheral tooth set 10 of the intermediate wheel meshes with an annulus gear 12 that drives the rotation of the air flap 5. The annulus gear 12 is free to rotate with respect to the spindle 51 of the flap 5. This flap 5 is rotationally driven by the annulus gear 12 via a driving pin 15 which itself rotates as one with the spindle 51 of the flap 5. This pin 15 when at rest lies against an adjustable end stop 16 secured to the valve body (not depicted). The annulus gear 12 comprises an angular cutout 17 designed to allow the annulus gear 12 to rotate freely over a defined angular sector without driving the pin 15, that is to say the flap 5. It is when the annulus gear 12 is rotated beyond this angular sector, in one direction or the other, that the edge of the cutout 17 then drives the pin 15.
The central tooth set 11 of the intermediate wheel 9 for its part meshes with an annulus gear 13 for driving the rotation of the gas flap 6. The annulus gear 13 rotates as one with the spindle 61 of the flap 6.
The flap 6 is therefore rotationally driven directly by the rotation of the annulus gear 13, while the flap 5 is rotationally driven only when the annulus gear 12 is driving the rotation of the pin 15.
In the example considered, the motor 7, via its pinion 8, driven in the counterclockwise direction, drives the rotation of the intermediate wheel 9 in the clockwise direction. The wheel 9 in turn, via its tooth sets 10, 11, drives the two annulus gears 12, 13 in the counterclockwise direction, these two annulus gears therefore being rotated by the same intermediate wheel 9 but via two different tooth sets 10, 11. The gearing ratio between the shaft 14 of the motor 7 and the gas flap 6 is 15.67 here, the ratio between the shaft 14 and the air flap 5, when the latter is being driven, being 6.67.
The mechanism for phase-shifting the closing of the air flap 5 will now be described.
From
The annulus gear 12 therefore continues to rotate in the direction of the position depicted in
A variant embodiment of the phase shifting mechanism is depicted in
Two circular slots 56, 57 for driving the pins 54, 55 in a circular translational movement are formed in the annulus gear 12. The pins 54, 55 respectively run in these two slots 56, 57.
As long as the pins 54, 55 are not resting against one of the end walls 58 of the slots 56, 67, the shaft 51 and the air flap 5 cannot be rotated. As soon as the pins 54, 55 come into abutment against the respective end walls of the two slots 56, 57, the annulus gear 12 drives them along with it, causing the flap 5 to rotate.
To ensure correct operation of the three-way valve, it is necessary for the angle subtended by the slots to be less than 180°. If αg is the angle through which the gas flap 6 rotates, αa, is the angle through which the air flap 5 rotates, then equation (1) must be satisfied
If we consider αg=90° (
αa>30° (2)
The gearing ratio
must then satisfy equation (3)
R<3 (3)
In the example mentioned hereinabove, the parameters considered were
The circular slots 56, 57 are formed in the annulus gear 12 with respect to the toothed sector of the annulus gear 12 giving due consideration to the size of the angle through which the gas flap 6 rotates before the air flap 5 begins to rotate.
The valve that has just been described is notable through the singularity of its control, being controlled solely by the DC motor 7, making it more cost-effective and compact.
This control can be achieved using an H-bridge, well known to those skilled in the art, with two pairs of switches in series and the component that is to be controlled—in this instance the motor—connected to the two mid-points of the two pairs of switches, the two pairs being connected between a battery voltage and ground.
Number | Date | Country | Kind |
---|---|---|---|
08 00024 | Jan 2008 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2008/001781 | 12/18/2008 | WO | 00 | 1/5/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/106727 | 9/3/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3572656 | Oshima | Mar 1971 | A |
4295491 | Galloway | Oct 1981 | A |
4749004 | Peash | Jun 1988 | A |
4924840 | Wade | May 1990 | A |
5427141 | Ohtsubo | Jun 1995 | A |
5448974 | Toda | Sep 1995 | A |
7267139 | Blomquist et al. | Sep 2007 | B2 |
7992589 | Albert et al. | Aug 2011 | B2 |
20050145229 | Eriksson et al. | Jul 2005 | A1 |
20050193978 | Ishikawa | Sep 2005 | A1 |
20050241702 | Blomquist et al. | Nov 2005 | A1 |
20080223038 | Lutz et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
102004044894 | Mar 2006 | DE |
102005048911 | Apr 2007 | DE |
1103715 | May 2001 | EP |
1555409 | Jul 2005 | EP |
2806448 | Sep 2001 | FR |
2879712 | Jun 2006 | FR |
WO 2007089771 | Aug 2007 | WO |
WO 2009106725 | Sep 2009 | WO |
WO 2009106726 | Sep 2009 | WO |
Entry |
---|
English language abstract for DE102004044894 extracted from espacenet.com database, dated Nov. 2, 2010, 11 pages. |
English language abstract for DE102005048911 extracted from espacenet.com database, dated Nov. 2, 2010, 13 pages. |
English language abstract for FR2806448 extracted from espacenet.com database, dated Nov. 2, 2010, 28 pages. |
English language abstract for FR2879712 extracted from espacenet.com database, dated Nov. 2, 2010, 15 pages. |
U.S. Appl. No. 12/811,120, filed Jun. 29, 2010, “Motor Vehicle Internal Combustion Engine EGR Loop”, 8 Pages, English translation for WO 2009/106725. |
U.S. Appl. No. 12/811,114, filed Jun. 29, 2010, “Motor Vehicle Internal Combusion Engine EGR Loop”, 15 pages, English translation for WO 2009/106726. |
PCT International Search Report for PCT/FR2008/001779, dated Jul. 9, 2009, 4 pages. |
PCT International Search Report for PCT/FR2008/001780, dated Jul. 13, 2009, 3 pages. |
PCT International Search Report for PCT/FR2008/001781, dated Jul. 9, 2009, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20110114211 A1 | May 2011 | US |