Two, or dual-sided direct thermal printing of documents such as transaction documents and receipts is described in U.S. Pat. Nos. 6,784,906 and 6,759,366. In dual-sided direct thermal printing, the printers are configured to allow concurrent printing on both sides of thermal media moving along a feed path through the printer. In such printers a direct thermal print head is disposed on each side of the media along the feed path. In operation each thermal print head faces an opposing platen across the media from the respective print head.
In direct thermal printing, a print head selectively applies heat to paper or other sheet media comprising a substrate with a thermally sensitive coating. The coating changes color when heat is applied, by which “printing” is provided on the coated substrate. For dual-sided direct thermal printing, the sheet media substrate may be coated on both sides.
A dual-sided direct thermal printer is configured to allow printing on both sides of a paper receipt, document, label or other thermal media moving along a feed path through the printer. In one embodiment, a dual-sided direct thermal printer comprises a thermal print head on each side of the media feed path and one or more media type sensors adapted to sense a type of media in the printer. In alternate embodiments, the dual-sided direct thermal printer may include an opposing platen disposed on each side of the feed path across from an associated print head and/or a guide roller on each side of said feed path. Dual-sided printer functionality, including identifying a type of media in the printer, may be controlled using commands implemented with, for example, setup configuration settings in hardware or software, escape sequences, real-time printer commands, and the like.
Dual-sided direct thermal printing provides for printing of variable information on both sides of a print media, such as a receipt, to save materials, and to provide flexibility in providing information to customers. The printing can be driven electronically or by computer using a computer application program which directs dual-sided printing.
By way of example, various embodiments of the invention are described in the material to follow with reference to the included drawings. Variations may be adopted.
Dual-sided direct thermal printing can be facilitated by a media 20 which includes dyes on opposite sides of the media 20, and a sufficiently thermally resistant substrate to inhibit thermal printing on one side of the media 20 from affecting coloration on the opposite side of the media 20.
The thermal print media 20 may be supplied in the form of a paper roll, fan-fold stack, individual sheet and the like, upon which printing such as graphics or text, or both, may be printed on one or both sides of the media 20, to provide, for example, a voucher, coupon, receipt, ticket or other article or document.
As shown in
A dual-sided imaging direct thermal printer 10 may further include a switch 70 enabling activation and deactivation of one or more dual-sided printing modes or functions. Such dual-sided printing function switch 70 can be a mechanically operated switch on the printer 10, or an electronically operated switch operated by a printer driver on an associated host computer or by firmware or software resident on the printer 10, and the like. The switch 70 may, for example, be electronically operated in response to a command message or escape sequence transmitted to the printer 10. Printer control language or printer job language (“PCL/PJL”), or escape commands, and the like, may be used. A printer setup configuration program setting, e.g., a setting made through a software controlled utility page implemented on an associated host computer, could also electronically operate the function switch 70 for the dual-sided printer 10.
In one embodiment, the dual-sided printing function switch 70 may be configured, programmed or otherwise setup to select or otherwise identify (1) data for printing (e.g., internally stored macros, externally received transaction data, and the like), (2) which of the two thermal print heads 50 and 60 will be used to print and/or be used to print particular data, (3) whether selected data is to be printed when the media is moving in a first (e.g., forward) or second (e.g., backward) direction, (4) in which relative and/or absolute media location, including on which media side, particular data will be printed, (5) in which orientation (e.g., rightside-up, upside-down, angled, and the like) particular data will be printed on the media 20, and the like. For example, a setting of the dual-sided printing function switch 70 may marshal a portion (e.g., a first half) of a block of selected externally received and/or internally stored print data to be printed on a first (e.g., front) side of the media 20 and another portion (e.g., a second half) to be printed on a second (e.g., reverse) side of the media 20. A further setting may reverse the media sides on which the respective portions of data are to be printed. In this manner a document such as a transaction receipt may be generated in which a portion of the associated transaction data is printed on one side of the receipt and the remaining portion of the transaction data is printed on the other side of the receipt, conserving upon the amount of media 20 required for printing of the receipt. A dual-sided printing function switch may accordingly be configured, e.g., by a control command message transmitted to the printer 10, to determine, inter alia, the portion or quantity of data, or a block of data, to be printed on each side of the media. Different blocks of data, or portions thereof, may be alternatively selected and marshaled to different sides, or locations thereon, of the media 20 by the switch 70.
In one embodiment, a printing function switch 70 may select a first portion of print data for printing on a first side of thermal media 20, such as a receipt paper roll, and a second portion of print data for printing on a second side of the thermal media 20. Such print data may comprise data contemporaneously received by the printer 10 from a host computer such as a point-of-sale (POS) terminal (not shown), an automated teller machine (ATM) (not shown), a self-checkout system (not shown), and the like, and/or data stored in one or more memory or buffer locations 80 in the printer 10. It should be noted that print data may be (1) processed for printing before receipt by or storage in the printer 10 by, for example, a host computer such as a POS terminal, (2) processed for printing after receipt by or storage in the printer 10 by, for example, the printing function switch 70, or a controller or processor 90 associated with the printer 10, or (3) a combination of (1) and (2), among others. Likewise, such processing may occur before or after selection, identification and/or apportionment of the print data for printing on the first and/or second side of thermal media 20 by the printing function switch 70.
In another embodiment, a printing function switch 70 may be configured to select or otherwise identify print data for printing at a specified location, including a side, of the print media 20 based upon a quantity of media required to print such data. Such quantity may be determined based on, inter alia, (1) a physical, as-printed size (e.g., length, width, perimeter, area, font size, and the like) of the to-be-printed data, (2) a portion of the media 20 that is thermally imagable (e.g., a portion having one or more thermally sensitive coatings), (3) a portion of the media 20 which is pre-printed or pre-imaged, (4) a portion of the media 20 which is excluded or desired to be excluded from thermal or other imaging (e.g., margins, headers, line spacings, indentations, desired or required blank space, and the like), (5) physical characteristics of the printer 10 (e.g., size of the platens 30 and 40, size of the thermal print heads 50 and 60, spacing 35 of the platens 30 and 40, spacing 55 of the thermal print heads 50 and 60, and the like), and the like.
In an embodiment, a printing function switch 70 may apportion a first portion of print data for printing on a first side of media 20 and a second portion of print data for printing on a second side of the media 20, wherein the first and second portions are selected to occupy substantially the same amount of space on the respective first and second media sides when printed. Likewise, the printing function switch may apportion a first portion of print data for printing on a first side of the media 20 and a second portion of print data for printing on a second side of the media 20, opposite the first side, wherein the as-printed size of the first portion is selected to be greater than the as-printed size of the second portion. Differences in the as-printed size of the first and second data portions may be selected to accommodate, inter alia, (1) differences in an amount of printable space (e.g., accounting for margins, headers, footers, preprinted information, thermal coating coverage, and the like) between the first and the second sides of the media 20, (2) differences in the type of data (e.g., internally stored macro versus externally received transaction, and the like) selected for printing on a given side, and (3) differences in thermal print head location on the first and the second sides of the media 20 (e.g., print head space 55).
In one embodiment, the printing function switch 70 may apportion a first portion of print data, such as ticket information, for printing on a first side of the media 20 and a second portion of print data, such as a legal information, for printing on a second side of the media 20, opposite the first side, wherein the as-printed size (e.g., printed area) of the first portion is selected to be greater than the as-printed size (e.g., printed area) of the second portion by an amount substantially equivalent to an amount of printable space (e.g., area) on the second side of the media 20 between the thermal print heads 50 and 60. It should be noted that the as-printed size of the print data on a given side may be controlled by selection of an amount of data to be printed on a given side, selection of a size at which selected data is to be printed (e.g., font, font size, and/or data scaling), and the like.
In a further embodiment, apportionment of print data may be made by a printing function switch 70 such that a length of media 20 along a media feed path (e.g., following the arrow at the top of
In one such case, first and second portions of data received by a printer 10, such as POS transaction data, may be identified by the printing function switch 70 such that a length of a first side of print media 20, such as a receipt, to be occupied by the first portion of the print data is greater than a length of a second side of the print media 20 to be occupied by the second portion of the print data by a length substantially equivalent to a spacing 55 between the first and the second thermal print heads 50 and 60. Other relevant lengths and/or variations in the apportionment of print data are, of course, possible. Additionally, the received print data may be stored in one or more buffers 80 of the printer 10 before or after identification by the printing function switch 70 for printing on one or both sides of the media 20.
In another embodiment, data selected or otherwise identified for printing on one or both sides of media 20 by the printing function switch 70 may include predefined print data or macros, such as one or more of a location identifier (e.g., address), an establishment identifier (e.g., store), a computer identifier (e.g., POS terminal), a logo, an advertisement, and the like, stored in one or more memories associated with the printer 10. In one example, some or all of such predefined print data may be selected for printing in the space 55 between the first and the second thermal print heads 50 and 60 on one or both sides of the media 20. Further, such information may be selected for printing in advance of any contemporaneously received print data, such as transaction data received from a POS terminal, which is to be included on, for example, the same document or receipt. As such, predefined print data may be selected for printing on regions of the media 20 where it may otherwise be difficult or undesirable for printing of contemporaneous information to occur, such as a region of media 20 between the first and second thermal print heads 50 and 60, thereby maximizing use of the media 20.
In a further embodiment, the printing function switch 70 may apportion print data, including internally stored macros and/or received transaction data, among a first and a second side of the thermal media 20 in order to optimize use of the media. In performing such optimization, the printing function switch may control the as-printed size (e.g., font, font size, scaling, and the like) of selected print data. Likewise, the printing function switch 70 may take account of, inter alia, (1) media size and design parameters including desired or required headers, footers, margins, and the like, (2) thermally sensitive coating location(s), and (3) any information that may be preprinted on the media 20. In one embodiment, such accounting may comprise the printing function switch 70 avoiding apportionment of some or all of the selected print data to certain media regions such as regions where preprinted data exists, apportioning of some or all of the selected print data to other media regions such as regions set off by one or more sensemarks, and the like. Further, in other embodiments, one or more sensors 100, such as one or more optical sensors, may be used to sense regions of preprinted information and/or regions demarked by one or more sensemarks for making apportionment and non-apportionment decisions as part of such print media use optimization.
Additionally or alternatively, one or more sensors 100 may be used to ascertain a type of media 20 (e.g., single-sided thermal, double-sided thermal, non-thermal, label, roll, fan-fold, preprinted, and the like) loaded into the printer 10. Signals from such sensors may then be used to, inter alia, provide notification to an operator of the type of media 20 in the printer 10, and/or enable or disable one or more functions of the printer 10 based on the sensed media type.
In one embodiment, one or more sensors 100 may be used to sense whether thermal printing has occurred on one or both sides of installed media 20 after an attempt to image by a first and/or a second thermal print head 50 and 60. A signal indicative of success or failure to sense expected thermal printing from the one or more sensors 100 may then be used to provide an indication of such success or failure to an operator, such as by providing an audible, visual and/or tactile notification, printing a message on one or more sides of the installed media, and/or sending a signal to an attached computer, such as a POS terminal, an ATM, a self-checkout system, and the like, for triggering generation of an operator notification. Likewise, a signal from the one or more sensors 100, such as a signal indicative of success or failure to sense expected thermal printing, may be used to enable or disable one or more dual-sided imaging direct thermal printer 10 functions, such as printing by one or more thermal print heads 50 and 60, advancement of the media 20, operation of a cutting mechanism (e.g., knife blade mechanism 370 in
In one embodiment, shown in
In operation, an attempt may be made by the dual-sided imaging direct thermal printer 10 to thermally image the media 20 using the first thermal print head 50. During such attempt, print data may be selected from a memory or buffer 80 for printing by the first thermal print head 50. If, after an attempt by the first thermal print head 50 to print, the sensor 100 does not sense the selected print data, a print failure signal may be generated. Such print failure signal may then be used to generate one or more internal (e.g., printer 10) and/or external (e.g., connected computer or terminal) notifications for an operator, and/or enable and/or disable one or more printer 10 functions, such as disabling further printing by the first thermal print head 50.
In one embodiment, one or more sensors, such as a sensor 100, will be found to have not sensed the selected print data where a signal from the sensor 100 does not match, to within a desired tolerance, a signal expected from the selected print data. Such expected signal may be stored in a memory or buffer 80 of the printer 10, and compared to a signal from the sensor 100 by, for example, a controller or processor 90 associated with the printer 10. Such controller or processor 90 may, then, generate a further signal indicative of the type of media installed in the printer 10 (e.g., single-sided thermal, double-sided thermal, or non-thermal) on the basis of such comparison, which further signal may be used to provide an operator notification and/or automatically enable and/or disable one or more printer functions.
One or more generated operator notifications may indicate the media 20 is not thermally coated on the side of the media 20 sought to be imaged by the first print head 50 (e.g., the media 20 is not double-sided thermal media). In one case, such a notification may further include an indication to an operator to replace the installed media 20 with proper (e.g., double-sided thermal) media 20. Additionally or alternatively, such indication may provide an operator with an option to continue using the installed media 20 with the first thermal print head 50 disabled from further printing. In alternate embodiments, such disablement may be automatic, and may require further printer 10 or operator input or action to override and/or otherwise change. Additional media types, such as single-sided thermal media coated on a side imagable by the first thermal print head 50 may also be selected and/or indicated for use.
Where required or desired, operator input may be provided directly through one or more printer 10 input devices, such as one or more switches, accessible to an operator. Additionally or alternatively, operator input may be provided through, for example, an attached, operator accessible terminal, such as a POS terminal (not shown) adapted to send control and/or configuration information to the printer 10 in the form of, for example, one or more escape sequences. In one embodiment, operator input is provided through and/or maintained by a printing function switch 70.
In another embodiment, shown in
In operation, an attempt may be made by the dual-sided imaging direct thermal printer 10 to thermally image the media 20 using the second thermal print head 60. During such attempt, print data may be selected from a memory or buffer 80 for printing by the second thermal print head 60. If, after an attempt by the second thermal print head 60 to print the selected data, the sensor 102 does not sense the selected print data, a print failure signal may be generated. Such print failure signal may then be used to generate one or more internal (e.g., printer 10) or external (e.g., connected computer or terminal) notifications for an operator, and/or disable one or more printer 10 functions, such as disabling further printing by the second thermal print head 60.
Additionally or alternatively, if, after an attempt by the second thermal print head 60 to print the selected data, the sensor 102 does sense the expected print data, a print success signal may be generated. Such print success signal may then be used to generate one or more internal (e.g., printer 10) or external (e.g., connected computer or terminal) notifications for an operator, and/or disable and/or enable one or more printer 10 functions, such as enabling further printing by the second thermal print head 60.
In one embodiment, one or more sensors, such as a sensor 102, will be found to have sensed the selected print data where a signal from the sensor 102 matches, to within a desired tolerance, a signal expected from the selected print data. Such expected signal may be stored in a memory or buffer 80 of the printer 10, and compared to a signal from the sensor 100 by, for example, a controller or processor 90 associated with the printer 10. Such controller or processor 90 may, then, generate a further signal indicative of the type of media installed in the printer 10 (e.g., single-sided thermal, double-sided thermal, or non-thermal) on the basis of such comparison, which further signal may be used to provide an operator notification and/or automatically enable and/or disable one or more printer functions.
One or more such notifications may indicate the media 20 is thermally coated on the side of the media 20 sought to be imaged by the second thermal print head 60. In one case, such notification may further include an indication to an operator that proper media 20 is installed in the printer 10 and continued printer 10 operation may proceed. Additionally or alternatively, such indication may provide an operator with an option to use the installed media 20 with the second thermal print head 60 enabled whether such operation was previously enabled or disabled.
As previously described, enablement and/or disablement of one or more thermal print heads 50 and 60, or other printer component or functionality, may automatically occur in response to a signal from one or more print sensors 100 and 102, and may require further printer 10 or operator action to thereafter change. In one such embodiment, operation of a first and/or a second thermal print head 50 and 60 may be re-enabled following a prior, automatic disablement upon successful sensing of thermal printing by a sensor 100 or 102.
In yet another embodiment, shown in
In operation, an attempt may be made by the dual-sided imaging direct thermal printer 10 to thermally image the media 20 using the first and the second thermal print heads 50 and 60. During such attempt, first print data may be selected from a first memory or buffer 80 for printing by the first thermal print head 50, and second print data may be selected from a second memory or buffer 80 for printing by the second thermal print head 60. If, after an attempt by the first thermal print head 50 to print it, the sensor 100 does not sense the selected first print data, a first print failure signal may be generated. Such first print failure signal may then be used to generate one or more internal (e.g., printer 10) or external (e.g., connected computer or terminal) notifications for an operator, and/or to automatically enable or disable one or more printer 10 functions, such as further printing by the first thermal print head 50. Likewise, after an attempt by the second thermal print head 60 to print it, if the sensor 102 does not sense the selected second print data, a second print failure signal may be generated by the sensor 102. Such second print failure signal may then be used to generate one or more internal (e.g., printer 10) or external (e.g., connected computer or terminal) notifications for an operator, and/or to automatically enable or disable one or more printer 10 functions, such as further printing by the second thermal print head 60.
Where one or more sensors 100 and 102 are installed proximate to first and second thermal print heads 50 and 60, a multitude of operations and/or notifications are possible. For example, in one embodiment, thermal media may be indicated by a first sensor 100, and non-thermal media may be indicated by a second sensor 102, resulting in an indication of the installation of single-sided thermal media 20 oriented for printing on a first side by the printer 10. In such case, a first thermal print head 50 may be manually or automatically enabled for printing while a second thermal print head 60 may be manually or automatically disabled for printing. Similarly, in another embodiment, non-thermal media may be indicated by a first sensor 100, and thermal media may be indicated by a second sensor 102, resulting in an indication of the installation of single-sided thermal media 20 oriented for printing on a second side by the printer 10. In such case, a first thermal print head 50 may be manually or automatically disabled for printing while a second thermal print head 60 may be manually or automatically enabled for printing. In each of the above noted cases, one or more operator notifications, such as the printing of a message indicating single- or non-double sided thermal media is installed by a respective, operative thermal print head, may also be provided.
In yet another embodiment, thermal media 20 may be indicated by both a first and a second sensor 100 and 102, resulting in an indication that double-sided thermal media is installed for printing on both a first and a second side thereof. In such case, printing by either or both a first and a second thermal print head 50 and 60 may be manually and/or automatically enabled. Similarly, in still another embodiment, non-thermal media may be indicated upon indication of non-thermal media by both the first and the second sensors 100 and 102. In such case, printing by both a first and a second thermal print head 50 and 60 may be manually and/or automatically disabled, and/or an operator notification, such as one or more audible, visual and/or tactile alarms indicating non-thermal media is installed, may be provided.
In all cases, enablement and/or disablement of one or more print functions, such printing by the first and/or second thermal print heads 50 and 60, may be automatically provided for in response to one or more signals from the one or more sensors 100 and/or 102. Likewise, enablement and/or disablement of one or more print functions may be provided for via manual print mode selection following operator notification. Variations of the above, including combined manual and automatic schemes (e.g., automatic print mode selection with manual operator override), are also possible.
In alternate embodiments, a result from a print media type determination may be compared to one or more print mode settings in advance of, for example, manually or automatically making changes to one or more printer functions. Such print mode settings may be stored in one or more memories or buffers 80 of the printer 10. In one embodiment, where the printer is set for single-sided printing on a first side of thermal media 20, no manual or automatic change to the print mode may be warranted or made where the installed media is determined to be double-sided thermal media or single-sided thermal media oriented for printing on the first side. However, where the printer is similarly set for single-sided printing on a first side of thermal media 20, manual and/or automatic change to the print mode may be required or made where the installed media is determined to be single-sided thermal media oriented for printing on a second side. Additional combinations and/or variations on the above scenarios are, or course, possible. Further, where a conflict exists between a detected media type and one or more print mode settings, a user may be prompted to change and/or replace the media 20 in addition to, or instead of the making of any manual and/or automatic printer function and/or mode modification.
In practice, a dual-sided direct thermal imaging printer 10 may be configured to manually and/or automatically perform a print media type check operation in response to, inter alia, a variety of printer operations, conditions and/or inputs. For example, in one embodiment, a print media check may occur on-demand (e.g., operator selected). In another embodiment, such print media check may be periodic, occurring, inter alia, at one or more fixed times and/or intervals. Additionally or alternatively, such print media check operation may be triggered by a particular event including, inter alia, power-on of the printer 10, connection of the printer 10 to an external device such as a computer or terminal (not shown), and/or replacement of media 20.
In case of replacement or replenishment of print media 20, a print media check may be triggered by one or more signals from one or more media sensors associated with the printer 10. Such media sensors may include one or more of a media installed sensor, and a media quantity sensor, as well as one or more media type sensors. In one embodiment, a media-in signal following a media-out signal (e.g., media replenished) may trigger execution of a print media check. Likewise, in case of a power-on of the printer 10, a print media check may be performed as one of an array of pre-operational printer diagnostics.
Regardless, initiation of a print media check may occur in response to a single trigger or command, or a print media check may occur as a result of multiple triggers or commands. Similarly, initiation of a print media check may require additional signals be provided, and/or permissives be met, as a condition precedent to execution of a print media check. Such additional signals or permissives may include a printer closed signal provided by, inter alia, one or more contact or limit switches (see, e.g., limit switch 420 in
Once the one or more permissive have been met, in step 630 print media check data is obtained (e.g., received and/or retrieved) for attempted printing by the first and/or the second thermal print heads 50 and 60. Such print media check data may comprise text (e.g., ASCII, Kanji and the like) and/or graphics, and include one or more messages (e.g., messages 708 and 728 in
Once obtained, an attempt is made in step 640 to image one or both sides of the media 20 with the print media check data. As shown in
In step 650, one or more signals are obtained from one or both of the sensors 100 and 102 in an attempt to obtain sensor data indicative of success or failure to print the expected print media check data on one or both sides of the media 20. Such one or more sensor signals may be obtained concurrently with the attempt to print, or after the attempt to print is complete. Likewise, such sensor signals may be obtained after a delay related to, for example, movement of the media from a respective print head 50 and 60 to a location of a respective sensor 100 and 102. Any such delay obtaining the one or more sensor signals may be factored into, and used as part of the media identification and/or validation process performed by the print media check routine.
Depending on the type of sensor 100 and 102, any such obtained sensor signals may undergo a conversion or other transformation including, inter alia, an analog-to-digital conversion and/or a Fast Fourier Transformation (FFT).
In step 660, data from the raw and/or converted sensor signals is compared with sensor signal data expected to be obtained from successful printing of the print media check data. As for the print media check data, such expected sensor data may be received from a computer or terminal in communication with the printer 10, or retrieved from one or more memories or buffers 80 associated with the printer 10. In a one embodiment, the expected sensor data is retrieved from an EEPROM associated with the printer 10.
Comparison of the obtained sensor data to the expected sensor data may comprise comparing, inter alia, one or more voltages, currents, and/or bitmaps associated with a sensor 100 and/or 102 to one or more expected voltages, currents, and/or bitmaps associated with the expected signal data. Further, such comparison may comprise determining if data from the one or more sensor signals, with or without additional processing, matches the expected sensor data to within a predefined tolerance (e.g., +/− a predefined voltage, a predefined current level, and/or a predefined number of bits in a bitmap). It should be noted that binary (e.g., 1/0, or sensed/not sensed) signals and comparisons are, however, also possible.
In step 670, depending on whether a match is found between the data indicative of the one or more signals from the one or more sensors 100 and 102 and the expected signal data, an indication of a positive (successful) or negative (failed) test may be provided. As shown in
Providing an indication of a print attempt success or failure may also comprise generating an audible, visual, or other (e.g., tactile) notification indicating success or failure of a print media check. Additionally or alternatively, such indication may comprise generating one or more signals indicative of success or failure of a print attempt, and/or a type and/or orientation of media installed in the printer 10 (e.g., double-sided thermal media, single-sided thermal media oriented for printing on a first side, single-sided thermal media oriented for printing on a second side, or non-thermal media).
As shown in step 680, such generated indication and/or signal may be used to prompt manual and/or automatic enablement and/or disablement of one or more functions of the printer 10. In one embodiment, a signal or other indication of single-sided or non-thermal media being installed in the printer 10 may be used to prompt or require an operator to install double-sided media in advance of further printer use. Additionally or alternatively, such signal or indication may be used to prompt or require an operator to select a print mode commensurate with the installed media type. Similarly, a signal indicating success or failure to print selected print media check data on one or both sides of print media may be used to automatically set a print mode commensurate with the installed media type. Such automatic print mode selection may comprise, inter alia, enabling or disabling printing by a first thermal print head, enabling or disabling printing by a second thermal print head, or enabling or disabling printing by both a first and a second thermal print head. In one embodiment, where non-thermal media is sensed, all printer 10 functionality may be disabled, and a user may be prompted to replace the installed media with single- and/or double-sided thermal media before printing may resume.
It should be noted that location on installed media of print media check data, including an attempted print thereof (e.g., location of an attempted print of bar code 710 on a side 704 of media 700 in
In an additional embodiment, presence or absence of expected print media check data on one or both sides of media, such as one or more logos 766 on a first side 762 and/or a second side 764 of print media 760 in
In other embodiments, baseline signals from the one or more sensors 100 and 102 for blank (e.g., non-thermally imaged) media may be ascertained by sensing the blank media prior to an attempt to image. Such baseline signals may then be utilized in a comparison between signal data obtained from the one or more sensors 100 and 102 after an image attempt and the expected signal data (e.g., as in step 660 of
As previously described, print media check data may comprise any combination of text, graphics, and/or other machine readable and/or user discernable information. Additionally, the same or different print media check data may be selected for printing on one or both sides of print media. Likewise, in some embodiments, a print media check may be performed on one, two, or no (e.g., print media checking is disabled) sides of the media 20.
In addition to providing an indication of success or failure of a print attempt, including, inter alia, providing an indication of installed media type to a user and/or enabling/disabling one or more printer functions, results from a print media check may be saved in one or more memory or buffer locations 80 associated with the printer 10 and/or sent to attached computer or terminal. In one embodiment, a fault log may be established to track success and/or failure of a print media check, and/or log a number of times an installed media type matches a set printer configuration (e.g., single-sided paper for single-sided printing, double-sided paper for double-sided printing), and the like.
In particular, in addition to ascertaining if an expected image is provided on one or both sides of installed media, a print media check may also determine if the installed media is compatible with pre-selected print mode. Such compatibility may then be used on determining whether to enable and/or disable one or more printer functions, such as printing by a first and/or a second thermal print head.
In additional embodiments, one or more media sensors may be installed on both sides (e.g., upstream and downstream) of a respective thermal print head 50 and 60 to permit sensing irrespective of print direction (e.g., in both a forward and/or backward media feed direction).
Additionally, in other embodiments, a single sensor may be used to sense thermal printing on both a first (e.g., front) and a second (e.g., back) media side. Such a design may be particularly useful where a contrast of thermal printing is high in comparison to a background of blank print media, and/or print media is at least partially transparent at one or more sensing wavelengths.
As further shown in
A printer 200 may also include an electronically activated mechanical cutting or knife blade mechanism 370 to sever the print media upon completion of a print task such as printing of a transaction receipt. A serrated edge 380 may also be included to enable manual severing of the print media at the end of a transaction, when a media print roll is replaced or reloaded, and the like.
As illustrated in
The memory 80 of the dual-sided direct thermal printer 200 may have a predefined print data storage area to store one or more blocks of predefined print data to be repetitively printed on one or both sides of the print media. The blocks of predefined print data may comprise, for example, a store identifier, a logo, a coupon, an advertisement, and the like. The predefined print data may be printed along with data submitted by application software associated with the POS terminal (not shown) on the same or an opposite media side. Where multiple data blocks are stored in the predefined print data storage area, the blocks may be alternatively selected for printing through use of the hardware or software switch 70, as may be the location on or side of the media they are printed, and the like.
A dual-sided direct thermal printer 200 as described may be operated with legacy or other application program software developed for use with, for example, a single-sided direct thermal printer. In such case, the dual-sided logical or mechanical printing function switch 70 may be used to enable dual-sided thermal media printing using input from the single-sided application program software.
The switch 70 may enable activation and deactivation of one or more dual-sided printing functions in response to a manual setting, or to a command message or escape sequence transmitted to the printer 200 via the communication controller 396, or a configuration setting though a driver or utility interface as previously described. In one example, the single-sided application software conventionally controls printing of submitted data on one media side, while the switch 70 enables printing of, for example, additional information on the opposite media side. This functioning would allow realization of dual-sided direct thermal printer benefits with legacy software, before or without having to invest in custom printing mode applications or other new application program or interface software.
A one-sided printing application program may thus control direct thermal printing on one side of a media sheet, where the dual-sided printing function switch 70 is configured to enable thermal printing on the other media side. The data printed under control of the function switch 70 may be a block of data stored in the memory 80 of the printer 200 for repetitive printing as previously described. The block of data to be printed may, for example, be selected by a command or an escape message, as a function of data received from the one-sided printing application program such as transaction detail data, or it may be randomly selected, as previously described.
By enabling printing on one side of a media sheet by a one-sided printing application program, and enabling printing on the opposite side of the sheet by operation of the function switch 70 activating and deactivating one or more dual-sided direct thermal printing functions, requirements for application program software may thus be simplified. Legacy or other application program software for one-sided printing which do not directly operate all dual-sided direct thermal printing functions may thus be used to print on one side of a media sheet. Stored, or other data received by, or available to the printer 200 may then be printed on the opposite side of the sheet media.
In another example, the dual-sided direct thermal printer 200 may be operated to print data provided by legacy or other application program software on both sides of a media sheet. In such case, the dual-sided logical or mechanical printing function switch 70 is used to enable a further mode of operation of the dual-sided thermal printer 200 to divide and apportion data received from the single-sided application program software among the two media sides. Such a split can be even, e.g., half of the data is printed on each side of the media, or can be otherwise apportioned to maximize use of the media in light of any preprinted material on or supplemental information to be printed with the single-sided application program provided data, and the like.
As a further option, the dual-sided thermal printer 200 may be designed to accommodate the ability to print on the front and back, or either side independently, of a thermal media.
The printer 200 of
Additionally, a signal from a further sensor (not shown) may be used to indicate that a proper pressure for printing is obtained between opposing print heads and platens. Likewise, a further sensor (not shown) may be used to indicate a proper tension is obtained on the print media, or a locking mechanism such as one or more latch 430 is properly engaged. As for the limit switch 420, a signal from any such sensor may used to trigger notification of an improper condition to an operator (not shown), such as through the sending of an error message to a POS terminal (not shown), and/or through disabling some or all printer operations until the condition is corrected, and the like.
A locking mechanism, such as one or more latch or detent 430, is also provided with the printer 200 to secure the pivotable supporting arm 300 in place, and maintain the proper positioning of opposing print heads (210 and 270), platens (220 and 280) and guide rollers (230 and 290), including maintaining a proper contact pressure across the width of the media, and/or tension of the media along the media feed path 250 during printer operation. As shown, the latch 430 is biased by a spring 432 against a stop 434, and is released by pressing of a button 435. In addition to moving the latch 430 away from the stop 434, depression of the button 435 applies sufficient upward force on the cover 300 to separate the print heads from the platens in light of the applied contact pressure and frictional forces, and thereby allow the cover 300 to be freely opened.
The latch 430, in combination with the spring 350, also prevents the pivotable supporting arm 300 from striking the supporting arm or base structure 240, or other components of the printer 200 such as the print head 210, platen 220 and/or guide roller 230 if the pivotable supporting arm or cover 300 is opened and dropped.
In alternate configurations, a modular printer 510 may have a first print head 520 and first platen 560 coupled into a single, first module, and a second print head 530 and second platen 570 coupled into a single, second module. Similarly, in a further variation, a first print head 520 and second platen 570 may be coupled into a first module, and the second print head 530 and first platen 560 may be coupled into a second module. Additional module print head and/or platen configurations and couplings are possible.
Regardless of the configuration, any of the attachments 600 used to attach any of the various modules to the cover 300 and/or base 240 may comprise static or dynamic (e.g., spring mounted) couplings for reducing mechanical stress on the various modules, and assisting in maintaining a desired contact pressure on the print media by the respective print heads and platens during print operations. In practice, each of the cover 300 and base 240 are appropriately modified (not shown) to readily accept the respective modules and associated attachments 600. It should be noted that the attachments 600 may comprise electrical contacts, electro-mechanical contacts, and/or mechanical contacts depending on the attachment module type (e.g., platen, print head, and platen and print head), and the like.
It will now be appreciated that a dual-sided thermal printer has been described for printing on both sides of thermal print media. Some alternative and/or additional embodiments will now be described.
Fixed Upper Support Arm or Cover
While the above described dual-sided direct thermal printer examples illustrate an upper support arm or cover 300 as being pivotable with respect to a lower support arm or base 240 about a hinge pin 310, the upper support arm or cover 300 may also be fixably attached, or otherwise coupled to the lower support arm or base 240, and not pivotable. In one example, the upper support arm or cover 300 is attached to the lower support arm or base 240 using one or more fasteners such as screws.
Dual-Sided Thermal Printer Print Head Configuration
In equipment with automated or automatic replacement media feed (e.g., automated in-feed of replacement thermal paper rolls or fan-fold stacks), such as ATM's and various other self-service terminals, a dual-sided thermal printer such as printer 440 of
Optimized Print Head Spacing
The lateral spacing of a first and a second thermal print head (e.g., spacing 55 of
Dual-Sided Thermal Printer Guide Roller Configuration
A dual-sided thermal printer 200 or 400 may comprise a pair of guide rollers 230 and 290 for maintaining a proper tension of print media, and guiding the media through the printer. The rollers can be respectively coupled to pivoting opposing arms that support print heads and platens. For example a print head, a platen and a guide roller can be coupled to a supporting arm or base structure on one side of the media feed path. Opposing print head, platen and guide roller elements can be coupled to a second supporting arm, e.g., a structure that pivots with respect to the base structure, that aligns on the opposite side of the media feed path. Each print head may thus be opposed by a platen and the guide rollers may oppose or be in proximate relation to one another across the media feed path. Contact pressure may be maintained against the print media by one or more springs urging the print heads against the platens. Similarly, one or both guide rollers may be spring loaded to maintain appropriate roller contact pressure with the print media. In an alternative configuration, two print heads may directly oppose one another across the feed path without platens. In one such configuration, each of two supporting arms may be coupled to an associated guide roller and one of the print heads. In another configuration a guide roller can comprise a pair of spaced coaxially aligned guide rollers. The space between the coaxially aligned guide rollers allows the addition of a variable size paper guide to accommodate different width media; whether rolls, fan-fold, sheet or otherwise.
Platen Configuration
In a dual-sided direct thermal printer such as the printer 200 shown in
Depending on their design and/or use, one or more platens or platen surfaces may comprise one or more coatings or materials. For example, where a platen is used to feed the media through the printer, as for platens 220 and 280 of
In one embodiment, the platens have a substantially round cross-section of approximately ⅜ to ½ inch diameter, and are substantially the same length.
In another embodiment, two thermal print heads are substantially opposite each other across a media feed path and act as respective platens for each other. In such case, one or both of the thermal print heads may comprise or be coated with a friction reducing material.
Drive Mechanism
In a dual-sided direct thermal printer, media feed may be provide for by one or more belts, wheels, rollers, and the like. In one example, shown in
Likewise, upstream and downstream platen drive mechanisms, such as motor driven upstream and downstream platens, which are capable of individual or simultaneous operation, may be provided. Advantageously, where it is desired to move an imaging element in a forward direction, power is provided to drive the downstream platen, while where it is desired to move the imaging medium in a reverse direction, power is provided to drive the upstream platen. The dual drive feed mechanism allows automatic retraction of an imaging element such that printing may occur on a portion of the element that would otherwise be un-used owing to an off-set in the spacing 55 of print heads in a two-sided printer, and the like. The automatic retraction feature could also be implemented by a single motor driving both platens, e.g., where the platens are commonly coupled for rotation by one or more belts, or two or more gears as shown in
Uniform Print Head Contact Pressure
A desired uniform print head to platen contact pressure across the width of a two-sided imaging element can be provided during printer operation. The mechanism for this may include one or more springs on or associated with the print heads, platens and/or common supports therefore, e.g., springs 320, 330 and/or 350 shown in
Printer Operating Permissives
Control electronics, such as one or more sensors 100, 360 and 420 in the form of one or more paper sensors to detect media presence and/or printing thereon, and contact switches to detect proper mechanical arrangement and alignment of print elements for printing, and the like, can be used to permit (e.g., as permissives) and control operation of a dual sided thermal printer and/or dual sided thermal printer functionality. For example, one or more contact sensors may be provided to allow printer operation only when the first and second print heads are properly positioned with regard to the first and second platens, a proper contact pressure is achieved between the first and second print heads and their respective platens, and/or a supporting pivotable arm structure or cover 300 is properly secured, etc. Likewise, one or more optical sensors may be provided to detect presence of and printing on print media for enabling and controlling location of thermal printing on the media.
Retractable Print Mechanism
A mechanism (not shown) may be provided for individually retracting one or both print heads and/or platens in a two-sided printer to allow the printer to function in a single-sided print mode while minimizing wear on the unused print head or platen. The retracting mechanism may be manually or automatically, e.g., electronically or electromechanically, actuated.
Printer Functionality
A two-sided thermal printer and associated firmware for two-sided printing may advantageously support the following functions:
1. Single-sided print mode. This print mode supports basic single-sided printing, allowing operation of thermal print heads on one side of a media feed path.
2. Double-sided with single-side command mode (e.g., buffered print mode). This print mode will allow for the storage of some or all of the print data by the printer in advance of imaging the media. Print data received from, for example, a POS terminal (not shown) is stored in a print buffer 80 until an end-of-transaction message such as a knife (cut) command is received. Once the knife command is received the firmware will then divide the buffered print data and designate a first portion, such as a first half of the data, for printing on the first (e.g., front) side of the media, and a second portion of the data, such as the remaining half, for printing on the second (e.g., back) side of the media. After the designated data is printed on the respective first and second sides, then a physical knife cut by the knife blade mechanism 370 of roll media, a line feed to an end of sheet media, and the like, may be performed completing the print job. The double-sided buffered print mode may be enabled by manually setting of one or more DIP or other switches or jumpers, through use of a diagnostic set up routine, by sending an escape code or command, e.g., the 1F 11 xx command, to the printer, and the like.
3. Double-sided with double-side command mode (e.g., application controlled print mode). This print mode allows for control of double-sided print functionality by an application program such as transaction software running on a POS terminal. Such application may control printing through controlling the location of print data on a first (e.g., front) and a second (e.g., back) side of media such as a receipt, when and in what sequence the application data is to be printed, and the like. The double-side command mode may store application print data in one or more buffer or other memory locations prior to printing. Likewise it may select predefined data from one or more buffer or other memory locations to print at one or more locations of one or both sides of the media with or without application print data. The double-sided command mode may be initiated through receipt of one or more double-sided print commands, a diagnostic routine, through manual setting of switches or jumpers, and the like.
4. Double-sided print mode with predefined data. When operated in this mode, predefined data from one or more of predefined print data storage facilities (e.g., buffer or other memory locations) may be printed on one side of a two-sided thermal media, and application data, such as POS terminal transaction information, may be printed on another side separate from the predefined data print side. When this mode is selected, the printer may initiate printing on both sides of the media, or store the application print data in the data storage facility 80 until a command for initiating double-sided printing is received. The double-sided print mode with predefined data may be initiated through receipt of one or more associated commands, through use of a diagnostic routine, through manual setting of switches or jumpers, and the like.
Printer Capabilities
A dual-sided thermal printer 200 preferably has the following capabilities:
Print Speed: 4.0 inches per second (IPS) when 55 watt power is provided. This includes front and back printing.
Print Speed: 6.7 IPS when 75 watt power is provided. This includes front and back printing.
Print Buffer: Up to 450 print lines at 7.5 lines per inch (LPI) assuming 44 characters/line Logo/Text Storage.
Preferred Default Limitations
When printing, it is preferred that the character attributes be the same for the front and the back side of the receipt. For example if double high printing is printed on the front side then the printing on the back side would also be double high. Alternate front/back characters sizes and/or fonts are, however, possible.
When printing in the double-sided buffered print mode and the capacity of the print buffer 80 is exceeded, the printer can distribute the buffered data for printing on each side of the media, and then print the remaining data on one side, e.g., the front side of a receipt, prior to performing a knife cut. Alternately, the printer can distribute and print the buffered among the two sides then refill the print buffer 80 with additional print data, and continue this process until an end-of-transaction message such as a knife cut command, is received.
Status Update Messages
The following table defines exemplary dual-sided thermal printer sensor or state information specified by each identifier, and meanings of the lower 4 bits of the 3rd byte for identifier values:
Exemplary Printer Setting Change Commands:
Exemplary Two Side Printer Commands (e.g., Real Time Commands):
Exemplary Select Thermal Printing Mode Command:
ASCII: US′ n
Hexadecimal: 1F 60 n
Decimal: 31 96 n
Value of n:
0=Single-Sided Mode
1=Double-Sided Mode with Single-Side Command
2=Double-Sided Mode with Double-Side Command
3=Double-Sided Mode with Predefined Data
Default: n=0 (Single-Sided Mode). Selects the thermal printing mode; single-side or double-side print mode. If single-side mode is selected, thermal printing can only be executed on one (e.g., front) side of receipt paper. If double-side mode is selected, printing can be executed on front side or/and backside of receipt paper. With selection n=0, printing format is same as existing firmware.
Selection n=1 (Double-Sided Mode with Single-Side Command), print data is buffered and split in two parts. The first part of the print buffer will be printed on a first (e.g., front) side and the second part of the print buffer will be printed on a second (e.g., back) side of the media such as receipt paper. The printing of the data may be executed by, for example, sending a knife or other end of transaction command to the printer (Exception: The command Select Thermal Printing Side and Start Double-Sided Printing would be ignored).
Selection n=2 (Double-Side Mode with Double-Side Command), print data is selectively buffered and printed on the front and back side of media such as receipt paper upon command from an application program, such as software executed by a POS terminal. In addition to print data received from an application program, such as POS terminal transaction information, such print data may include predefined print data stored in one or more buffer or other memory locations of the printer.
Selection n=3 (Double-Side Mode with Predefined data), application program data, such as POS terminal transaction data, may be buffered and/or printed on a first side of thermal media, and predefined data, such as one or more of an advertisement, incentive, coupon, rebate or other information, may be printed on a second side of the thermal media. Data printed on a given media side may be switched such that, for example, transaction data is printed on a front side and predefined data is printed on a back side, and vice versa. Likewise, a given predefined data block may be printed only once for a given document such as a receipt. Document length is determined by the print data (e.g., transaction versus predefined) requiring the greater amount space.
The setting of this command is not stored into NVRAM/Flash memory.
The Printer Setting Change command (e.g., 1FH 11H) is used to store the setting.
Sending a 1Fh 62h will print data
Exemplary Select Thermal Printing Side Command:
ASCII: US a n
Hexadecimal: 1F 61 n
Decimal: 31 97 n
Value of n:
0=Front Side
1=Back Side
Default: 0 (Front Side)
Selects the thermal printing side: front side or back side. This command executes when the Thermal Printing Modes, Double-Side Mode with Double-Side Command is selected (n=2), otherwise, this command is ignored. This command is valid for subsequent lines.
If data exceeds buffer size, printer prints out automatically and print buffer is cleared. Printer mode remains unchanged.
Exemplary Limitations:
Character attributes are same for both sides. For example, when the front side printing characteristic is Double wide, the back side printing characteristic is also Double wide. When either side of printing area is lager than printing buffer (TBD: XX inch), printer will start printing automatically then printer return to single-sided printing.
Exemplary Start Double-Sided Printing Command:
ASCII: US b
Hexadecimal: 1F 62
Decimal: 31 98
Starts double-sided printing. This command executes if the Thermal Printing Modes, Double-Side Mode with Double-Side Command is selected (n=2), otherwise, this command is ignored. The paper length is determined by the longest side of the print data.
Exemplary Select or Cancel Upside Down Printing for Double-Side Mode Command:
ASCII: US c n2
Hexadecimal: 1F 63 n
Decimal: 31 99 n
Value of n:
Bit 0=0: Cancel Front Side upside down printing
Bit 0=1: Enable Front Side upside down printing
Bit 1=0: Cancel Back Side upside down printing
Bit 1=1: Enable Back Side upside down printing
Printing side (Front/Back side) is physical side of printing.
Default: 0 (Cancel upside printing for both sides)
This command makes the first line becomes the last line, and the first character of first line becomes the last character of last line. This command is valid in Double-Side Mode. Before starting double-side printing, only the last received select or cancel upside down printing command is effective. The setting of this command is not stored into NVRAM/Flash memory. The Printer Setting Change command (e.g., 1FH 11H) is used to store setting.
Exemplary Swap Front Side and Back Side Command:
ASCII: US d n
Hexadecimal: 1F 64 n
Decimal: 31 100 n
Value of n:
0: Cancel swap.
1: Swap Front Side and Back Side. Original Front Side data is printed on backside and original Back Side data is printed on front side.
Default: 0 (Cancel swap)
This command will swap the printing of the front side data and backside data when the printer is in Double-Side Mode. Before swapping Front Side and Back Side, the Front Side data is printed via Front Side thermal head. After swapping, the Front Side data is printed via Backside thermal head.
Before starting double-side printing, only the last received swap front side and backside command is effective.
The setting of this command is not stored into NVRAM/Flash memory.
The Printer Setting Change command (e.g., 1FH 11H) is used to store setting.
Exemplary Limitations: For Double-Side Mode w/Single-Side Command, if Logo is printed immediately before paper cut, after swap, the printing pattern on Front Side (Backside before swap) will have blank (e.g., 35 mm long) area.
Download Predefined 1-line Text Message into Printer Buffer ROM
ASCII: US e n k d1 d2. . . dk NUL
Hexadecimal: 1F 65 n k d1 d2. . . dk 0
Decimal: 31 101 n k d1 d2. . . dk 0
Value of n:
n: The line number. n=0,1,2,3.
k: The character attribute
d1, d2, . . . , dk Strings of 1-line Text Message. Strings terminated with NUL
This command will download one line of text into ROM. The message is used in all Double-Side Modes. User can select to automatically add a 1-line/2-line text message at bottom of Front Side or/and at top of Back Side. Front Side uses line 0 and line 1 and Back Side uses line 2 and line 3. Printing side (Front/Back side) is logical side of printing.
Exemplary Settings of Download Command Character Attribute:
Exemplary Enable predefined bottom/top message Command:
ASCII: US f n
Hexadecimal: 1F 66 n
Decimal: 31 102 n
Value of n:
Bit 0=0: Disable predefined bottom message on front side
Bit 0=1: Enable predefined bottom message on front side
Bit 1=0: Disable predefined top message on back side
Bit 1=1: Enable predefined top message on back side
Default: 0 (Disable predefined bottom and top message)
When this function is enabled, printer will automatically add a 1-line or 2-line text message at the bottom/top of front side/backside of receipt. This command is only valid in Double-Side Mode (All w/Single-Side Command and w/Double-Side Command and w/Predefined data). The setting of this command is not stored into NVRAM/Flash memory.
The Printer Setting Change command (e.g., 1FH 11H) is used to store setting.
Exemplary Select nth Macro Command:
ASCII: US g n
Hexadecimal: 1F 67 n
Decimal: 31 103 n
Value of n: 1 to 25
Default: n=1
Select nth macro for definition or execution.
If this command is received during definition of a macro, the current definition will be cleared. The same commands are used to define macro and execute macro as below.
Start or End Macro Definition (GS:)
Execute Macro (GS^) The Macro size is 2048 bytes each.
Exemplary Limitations: Characters exceeded one line will be ignored. If command sequence is US e n k NUL, printer will clear the nth line message in Flash ROM. If only one line is defined, printer will only print the defined line. Some attributes may not be supported—Script mode, 2-dot underline mode, Double strike mode, 90° Left/Right Rotation, Black/Red, Print Start Position, Character size≧3. Attribute cannot be changed in one line.
Exemplary Start or End Predefined Back Side Printing Command:
ASCII: US h
Hexadecimal: 1F 68
Decimal: 31 104
Starts or ends Predefined Back Side Printing and stored into the printer buffer ROM. Predefined back side printing definition begins when this command is received during normal operation and ends when this command is received during Predefined back side printing definition. If the printer receives a second “Start or End Predefined Back Side Printing” immediately after previously receiving a “Start or End Predefined Back Side Printing” the printer will clear Predefined Back Side Printing. If this command is received during a Macro's definition (GS:), the current Macro definition will be cleared. During definition of predefined backside printing, receive command GS: (Start or End Macro Definition) will make the current definition be cleared.
Exemplary Define Minimum Receipt Length Command:
ASCII: US i n1 n2
Hexadecimal: 1F 69 n1n2
Decimal: 31 105 n1 n2
Range of n1: 0-255
Range of n2: 0-255
Default:
n1=0
n2=0
This command defines the minimum media (e.g., receipt) length to start the conversion from single-side to double-side printing. This setting is enabled for only “Double-Sided Mode with Single-Side Command”.
Exemplary Print Media Check Mode Command:
Value n:
0=Media Checking Disabled Mode
1=Media Checking Enabled Mode
The Print Media Check Mode can be enabled or disabled in printer diagnostics. The setting (value) is saved into EEPROM. When Media Checking Enabled Mode is selected, the Select Thermal Printing Mode Command (e.g., 1F 60 n) may be ignored depending on the combination of identified media (e.g., single-sided, double-sided, non-thermal, and the like) and the Select Thermal Printing Mode Command setting (e.g., Single-Sided Mode, Double-Sided Mode with Single-Side Command, Double-Sided Mode with Double-Side Command, and Double-Sided Mode with Predefined Data).
In one embodiment the Print Media Check Mode Command is set to Media Checking Enabled, and the Exemplary Select Thermal Printing Mode Command is set to Double-Sided Mode with Single-Side Command. Upon execution of the check, if the media is determined to be double-sided thermal, operation will continue in the selected Double-Sided Mode with Single-Side Command. However, if the media is determined to be single-sided thermal, operation will proceed pursuant to the Single-Sided Mode, thereby ignoring (e.g., overriding) the Select Thermal Printing Mode Command (e.g., 1F 60 n) setting.
Further detail of one embodiment is provided in the following table.
As indicated in the above described embodiment, if single-sided rather than two-sided thermal media is detected, an error message may be printed on the thermal side of the single-sided media indicating to a user that two-sided thermal paper is not loaded. Other methods of user notification, including one or more visible, audible, and/or tactile alarms, are also possible.
Exemplary Return Thermal Printing Mode Batch Command:
ASCII: US I n
Hexadecimal: 1F 6C n
Decimal: 31 108 n
Values of n:
1=Thermal printing mode status
When n=1 the Return Thermal Printing Mode Batch Command transmits the status after all data currently in the receive buffer has been processed.
Exemplary Return Thermal Printing Mode Real Time Command:
2.14.15.1 ION USB or RS232
ASCII: US m n
Hexadecimal: 1F 6D n
Decimal: 31 109 n
2.14.15.2 Standard USB
ASCII: Since this command is used by Control transfer, the command strings are not defined.
Hexadecimal: 06 00 n (bRequest=0x06, wValue=0x00 n)
Decimal: 06 00 n
Value of n:
1=Thermal printing mode status
When n=1 the Return Thermal Printing Mode Real Time Command transmits the current printer mode status.
For both the Return Thermal Printing Mode Batch Command and the Return Thermal Printing Mode Real Time Command, the returned thermal printing mode status has the following bit designations:
As described above, depending on the selected print mode and detected media type, bits 4 and 5 of the Return Thermal Printing Mode Batch Command and the Return Thermal Printing Mode Real Time Command will have the following designations:
Formulas:
To set minimum document/receipt length to two inches at the default horizontal motion unit of 1/203 inches, send the four-byte string:
US i 150 1
Where 2 inches=406/203, and 406=(1×256)+150.
Exemplary Limitations:
Character attributes are same for both sides. For example, when the front side printing characteristic is Double wide, the back side printing characteristic is also Double wide. When either side of printing area is larger than printing buffer, printer will start printing automatically then printer return to single-sided printing.
Exemplary Configuration Menu Double-Sided Printing Settings:
Press the Paper Feed Button for the double-side printing settings you want.
Defaults are marked with an asterisk (*)
** SET Thermal Printing Mode?
YES>Long Click
NO>Short Click
Single-Side*>1 Click
Double-Side w/Single Cmd>2 Clicks
Double-Side w/Double Cmd>3 Clicks
Double-Side w/Predefined Data>4 Clicks
Enter code, then hold Button Down at least 1 second to validate
** SET Upside Down Mode?
YES>Long Click
NO>Short Click
F:Normal, B:Normal*>1 Click
F:Up Down, B:Normal>2 Clicks
F:Normal, B:Up Down>3 Clicks
F:Up Down, B:Up Down>4 Clicks
Enter code, then hold Button DOWN at least 1 second to validate
** SET Swap Front & Back?
YES>Long Click
NO>Short
Click
Disable*>1 Click
Enable>2 Clicks
Enter code, then hold Button DOWN at least 1 second to validate
** SET Bottom and Top Message?
YES>Long Click
NO>Short Click
Top: Disable, Bottom: Disable*>1 Click
Top: Enable, Bottom: Disable>2 Clicks
Top: Disable, Bottom: Enable>3 Clicks
Top: Enable, Bottom: Enable>4 Clicks
Enter code, then hold Button DOWN at least 1 second to validate
** SET Minimum Receipt Length?
YES>Long Click
NO>Short Click
Disable*>1 Click
5 inch>2 Clicks
10 inch>3 Clicks
15 inch>4 Clicks
Enter code, then hold Button DOWN at least 1 second to validate
** SET Reprint when Error Occurs?
YES>Long Click
NO>Short Click
Resume Print from Error Line*>1 Click
Reprint the Error Page>2 Clicks
Enter code, then hold Button DOWN at least 1 second to validate
The above description is illustrative, and not restrictive. In particular, designation of a first and a second print head, platen, gear, and the like, as well as a front and a back media side or a top or a bottom media portion, may vary among embodiments.
Further, many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the embodiments should therefore be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
The Abstract is provided to comply with 37 C.F.R. §1.72(b) and will allow the reader to quickly ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
In the foregoing description of the embodiments, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting that the claimed embodiments have more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the description of the embodiments, with each claim standing on its own as a separate exemplary embodiment.
This application claims priority to U.S. Provisional Application No. 60/779,781 entitled “Two-Sided Thermal Printing” and filed on Mar. 7, 2006, and U.S. Provisional Application No. 60/779,782 entitled “Dual-Sided Thermal Printer” and filed on Mar. 7, 2006; the disclosures of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3466423 | Janning | Sep 1969 | A |
3518406 | Janning | Jun 1970 | A |
3663390 | Fergason et al. | May 1972 | A |
3947854 | Hansen et al. | Mar 1976 | A |
4161277 | Steiner | Jul 1979 | A |
4167392 | Defago | Sep 1979 | A |
RE30116 | Maalouf | Oct 1979 | E |
4309255 | Gendler et al. | Jan 1982 | A |
4507669 | Sakamoto et al. | Mar 1985 | A |
4631596 | Yaguchi | Dec 1986 | A |
4708500 | Bangs et al. | Nov 1987 | A |
4806950 | Sekine et al. | Feb 1989 | A |
4853256 | Obringer et al. | Aug 1989 | A |
4924275 | Nelson | May 1990 | A |
4956251 | Washizu et al. | Sep 1990 | A |
4965166 | Hosoi et al. | Oct 1990 | A |
4987118 | Murata et al. | Jan 1991 | A |
5055373 | Saeki et al. | Oct 1991 | A |
5101222 | Hakkaku | Mar 1992 | A |
5130292 | Ito et al. | Jul 1992 | A |
5132704 | Nakagawa | Jul 1992 | A |
5196297 | Dombrowski, Jr. et al. | Mar 1993 | A |
5214750 | Minowa et al. | May 1993 | A |
5219821 | Arbee et al. | Jun 1993 | A |
5266550 | Asajima et al. | Nov 1993 | A |
5272127 | Mandoh et al. | Dec 1993 | A |
5284816 | Stephenson | Feb 1994 | A |
5319392 | Durst et al. | Jun 1994 | A |
5339099 | Nureki et al. | Aug 1994 | A |
5366952 | Granquist | Nov 1994 | A |
5398305 | Yawata et al. | Mar 1995 | A |
5428714 | Yawata et al. | Jun 1995 | A |
5437004 | Miyasaka et al. | Jul 1995 | A |
5476698 | Denny | Dec 1995 | A |
5537550 | Russell et al. | Jul 1996 | A |
5555349 | Miyasaka et al. | Sep 1996 | A |
5584590 | Ito et al. | Dec 1996 | A |
5585321 | Breen et al. | Dec 1996 | A |
5594653 | Akiyama et al. | Jan 1997 | A |
5629259 | Akada et al. | May 1997 | A |
5639169 | Aruga | Jun 1997 | A |
5667303 | Arens et al. | Sep 1997 | A |
5677722 | Park | Oct 1997 | A |
5686159 | Langan | Nov 1997 | A |
5688057 | Wright et al. | Nov 1997 | A |
5692110 | Miyasaka et al. | Nov 1997 | A |
5707925 | Akada et al. | Jan 1998 | A |
5710094 | Minami et al. | Jan 1998 | A |
5727135 | Webb | Mar 1998 | A |
5741592 | Lewis et al. | Apr 1998 | A |
5754213 | Whritenor | May 1998 | A |
5755521 | Ito et al. | May 1998 | A |
5756188 | Reiter et al. | May 1998 | A |
5763356 | Ueno et al. | Jun 1998 | A |
5781823 | Isobe et al. | Jul 1998 | A |
5789340 | Brust et al. | Aug 1998 | A |
5792725 | Simpson et al. | Aug 1998 | A |
5794530 | Dobashi et al. | Aug 1998 | A |
5800081 | Teradaira et al. | Sep 1998 | A |
5815191 | Michielsen et al. | Sep 1998 | A |
5846900 | Reiter et al. | Dec 1998 | A |
5876836 | Imamura et al. | Mar 1999 | A |
5883043 | Halbrook, Jr. et al. | Mar 1999 | A |
5886725 | Miyadera et al. | Mar 1999 | A |
5918910 | Stillwagon et al. | Jul 1999 | A |
5961228 | Ward et al. | Oct 1999 | A |
5964541 | Murison et al. | Oct 1999 | A |
5980128 | Verlinden et al. | Nov 1999 | A |
6000726 | Campbell | Dec 1999 | A |
6000867 | Yoshii et al. | Dec 1999 | A |
6042264 | Prusik et al. | Mar 2000 | A |
6095414 | Long et al. | Aug 2000 | A |
6106910 | Tan et al. | Aug 2000 | A |
6118956 | Hirao | Sep 2000 | A |
6130185 | Narita et al. | Oct 2000 | A |
6150067 | Koike et al. | Nov 2000 | A |
6151037 | Kaufman | Nov 2000 | A |
6165937 | Puckett et al. | Dec 2000 | A |
6197722 | Irving et al. | Mar 2001 | B1 |
6210517 | Eadara et al. | Apr 2001 | B1 |
6210777 | Vermeulen et al. | Apr 2001 | B1 |
6233057 | Ota | May 2001 | B1 |
6241386 | Limburg et al. | Jun 2001 | B1 |
6258746 | Mehta | Jul 2001 | B1 |
6267052 | Hill et al. | Jul 2001 | B1 |
6350072 | Nunes et al. | Feb 2002 | B1 |
6388692 | Iwata et al. | May 2002 | B1 |
6416154 | Silverbrook | Jul 2002 | B1 |
6523951 | Takeya et al. | Feb 2003 | B2 |
6524000 | Roth | Feb 2003 | B1 |
6543808 | Mitchell, Jr. et al. | Apr 2003 | B1 |
6544709 | Wang et al. | Apr 2003 | B1 |
6544925 | Prusik et al. | Apr 2003 | B1 |
6562755 | Halbrook, Jr. et al. | May 2003 | B1 |
6663304 | Vives et al. | Dec 2003 | B2 |
6705786 | Trovinger | Mar 2004 | B2 |
6737137 | Franko, Sr. et al. | May 2004 | B2 |
6759366 | Beckerdite et al. | Jul 2004 | B2 |
6784906 | Long et al. | Aug 2004 | B2 |
6786263 | Fox, Jr. et al. | Sep 2004 | B1 |
6801233 | Bhatt et al. | Oct 2004 | B2 |
6803344 | Halbrook et al. | Oct 2004 | B2 |
6812943 | Day et al. | Nov 2004 | B1 |
6906735 | Bhatt et al. | Jun 2005 | B2 |
6962449 | Lermant et al. | Nov 2005 | B2 |
6962763 | Maskasky et al. | Nov 2005 | B2 |
6982737 | Elko et al. | Jan 2006 | B2 |
7192904 | Iwasaki et al. | Mar 2007 | B2 |
7514262 | Ribi | Apr 2009 | B2 |
7520586 | Itoh | Apr 2009 | B2 |
7589752 | Janning | Sep 2009 | B2 |
7623145 | Taguchi | Nov 2009 | B2 |
7671878 | Yamada et al. | Mar 2010 | B2 |
7760370 | Oki | Jul 2010 | B2 |
20010034775 | Minowa | Oct 2001 | A1 |
20020122188 | Elko et al. | Sep 2002 | A1 |
20020124950 | Klima | Sep 2002 | A1 |
20030025779 | Miyazaki | Feb 2003 | A1 |
20030031861 | Reiter et al. | Feb 2003 | A1 |
20030112318 | Long et al. | Jun 2003 | A1 |
20030208560 | Inoue et al. | Nov 2003 | A1 |
20040046971 | Lapstun et al. | Mar 2004 | A1 |
20040084631 | Spoonhower et al. | May 2004 | A1 |
20040135872 | Burdenko | Jul 2004 | A1 |
20040265542 | Yanagisawa et al. | Dec 2004 | A1 |
20050020387 | Kennedy, III | Jan 2005 | A1 |
20050031392 | Yamamoto et al. | Feb 2005 | A1 |
20050146739 | Rayl et al. | Jul 2005 | A1 |
20050146740 | Fukuda | Jul 2005 | A1 |
20050148467 | Makitalo et al. | Jul 2005 | A1 |
20050164881 | Kenney et al. | Jul 2005 | A1 |
20050271866 | Lee | Dec 2005 | A1 |
20060072001 | Klein | Apr 2006 | A1 |
20060289633 | Moreland et al. | Dec 2006 | A1 |
20070109349 | Tanaka et al. | May 2007 | A1 |
20070207926 | VanDemark et al. | Sep 2007 | A1 |
20070223022 | Suzuki | Sep 2007 | A1 |
20090184510 | Frankel | Jul 2009 | A1 |
20090195584 | Itoh | Aug 2009 | A1 |
20090225353 | Ishibashi | Sep 2009 | A1 |
20100225932 | Kurose et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1065536 | Feb 1992 | CN |
0552956 | Jul 1993 | EP |
0947340 | Oct 1999 | EP |
1 862 318 | May 2007 | EP |
1 862 319 | May 2007 | EP |
2 250 478 | Jun 1992 | GB |
58008668 | Jan 1983 | JP |
58051172 | Mar 1983 | JP |
58008668 | Jun 1983 | JP |
03234560 | Oct 1991 | JP |
03293171 | Dec 1991 | JP |
H07-061141 | Aug 1993 | JP |
06262786 | Sep 1994 | JP |
H09-086041 | Sep 1995 | JP |
08-127152 | May 1996 | JP |
08-169127 | Jul 1996 | JP |
09-183427 | Jul 1997 | JP |
2000315275 | Nov 2000 | JP |
2001080131 | Mar 2001 | JP |
2001-199095 | Jul 2001 | JP |
2003-251595 | Sep 2003 | JP |
09-183427 | Sep 2004 | JP |
2004077001 | Sep 2004 | JP |
2006-095755 | Apr 2006 | JP |
2006-256289 | Sep 2006 | JP |
2088969 | Aug 1997 | RU |
02096665 | Dec 2002 | WO |
2004077001 | Sep 2004 | WO |
2007102879 | Sep 2007 | WO |
2007102879 | Sep 2007 | WO |
Entry |
---|
JP Abstract, vol. 007,No. 063 (M-200), Mar. 16, 1983 & JP 57-208298 A (Ricoh KK), Dec. 21, 1982. |
JP Abstract, vol. 007, No. 081 (M-105), Apr. 5, 1983 & JP 58-008668 A (Shinko Denki KK), Jan. 18, 1983. |
JP Abstract, vol. 015, No. 194 (M-1114), May 20, 1991 & JP 03-051149 A (Fujitsu General Ltd.), Mar. 5, 1991. |
JP Abstract, vol. 2000, No. 24, May 11, 2001 & JP 2001-199095 A (Alps Electric Co. Ltd.), Jul. 24, 2001. |
JP Abstract, vol. 1998, No. 08, Jun. 30, 1998 & JP 10-076713 A (Sony Corp.), Mar. 24, 1998. |
JP Abstract, vol. 010, No. 151 (M-483), May 31,1986 & JP 61-003765 A (Konishiroku Shashin Kogyo KK), Jan. 9, 1986. |
JP Abstract, vol. 016, No. 041 (M-1206), Jan. 31, 1992 & JP 03-246091 A (Canon Inc.), Nov. 1, 1991. |
Boca Systems Micro Plus 2S 2 Sided Printer product brochure which came to the attention of Applicant at a Chicago tradshow during the summer of 2002. |
APTi PowerEcoT R2412 printer brochure, which came to Applicant's attention in the summer of 2007 and was translated by Applicant's Japanese Office in the fall of 2007. |
APTi PowerEcoT R2412 printer brochure. |
Number | Date | Country | |
---|---|---|---|
20070211099 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60779781 | Mar 2006 | US | |
60779782 | Mar 2006 | US |