The present disclosure is generally directed to a clasp mechanism for securely fastening two components or parts together. In particular, the present technology is generally directed to a two-stage clasp mechanism that reduces the likelihood of unintentional release. In a specific example, the clasp can be used to secure the loose ends for wearable devices, jewelry, backpacks, luggage, and the like.
Clasps, also referred to as buckles, are devices that are used to secure two components and/or parts together (e.g., securing two loose ends, securing one loose end to a fixed part point, securing two components of an assembly together, and the like). In a typical clasp, a first component is attached to a second component and held by a catching mechanism in the clasp. Because of their simplicity, clasps are employed in a variety of settings. For example, they are often used in wearable devices (e.g., watches, smart watches, fitness monitors, location monitors, and the like), jewelry (e.g., bracelets, necklaces, anklets, earrings, and the like), other wearables (e.g., belts, clothing, shoes, slings, braces, helmets, and the like), bags (e.g., purses, backpacks, briefcases, fanny packs, luggage, and the like), harnesses, personal flotation devices and other vests, item straps, and/or in various other suitable settings. In a typical setting, the clasp (or buckle) is required to quickly connect and disconnect components and can provide some mechanism for adjusting where the components are connected (e.g., to adjust the tightness of the loose ends around an object). For example, a typical side release buckle has two joinable housing potions, sometimes referred to as a hook end and an insertion end, that can be adjustably secured to respective components. The hook end includes a center rod that guides the movement of the hook end and two spring arms that engage side holes on the insertion end. The buckle can be quickly engaged by inserting the hook end into the insertion end, and quickly disengaged by pinching the spring arms. However, because a typical the side release buckle must be designed to disconnect quickly, they can be easily unintentionally (e.g., accidentally, unwantedly, and the like) disconnected (e.g., by catching or bumping the spring arms on a foreign (e.g., external) object). This problem is common to typical clasps.
The drawings have not necessarily been drawn to scale. Similarly, some components and/or operations can be separated into different blocks or combined into a single block for the purpose of discussion of some of the implementations of the present technology. Moreover, while the technology is amenable to various modifications and alternative forms, specific implementations have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the technology to the particular implementations described.
Two-stage clasp mechanisms, and related systems and methods, are disclosed herein. In some implementations, the two-stage clasp mechanism (referred to as the “clasp mechanism”) includes a first housing portion (sometimes also referred to herein as a “plug”) and a second housing portion (sometimes also referred to herein as a “receptacle”) joinable to the first housing portion. The clasp mechanism includes a locking mechanism carried by the first and second housing portions that requires a sequence of two actions (e.g., two stages) to release the second housing portion from the first housing portion. In particular, a user first pulls a sliding element accessible through an outer surface of the second housing portion from a first position to a second position. Second, while holding the sliding element in the second position, the user compresses a button accessible on an outer surface of the first housing portion. Once fully compressed, a first biasing mechanism within the second housing portion pushes the second housing portion away from the first housing portion, helping to ensure that the two housing portions fully disengage.
The sliding element (sometimes also referred to herein as an “action component,” “sliding component,” “actuator,” “actionable component,” and/or a “locking mechanism”) is operably connected to a blocking component (sometimes also referred to herein as a “trap”) within the second housing portion while the button (sometimes also referred to herein as a “latch,” an “action component,” “sliding component,” “actuator,” “actionable component,” and/or a “locking mechanism”) is operably connected to a first striker (sometimes also referred to herein as a “hooked striker,” “hooked pin” and/or a “striker pin”) within the first housing portion. The first striker is connected to (e.g., engaged with, hooked around, and the like) a second striker within the second housing portion, thereby locking the first and second housing portion together. The first striker can be moved away and disengaged from the second striker by compressing the button. However, when the sliding component is in the first position, the blocking component prevents the first striker from moving (and preventing the button from being compressed). As a result, the button cannot be compressed (and the first and second striker cannot be disengaged) until the sliding component is in the second position. Moving the sliding component to the second position moves the blocking component, thereby clearing space for the first striker to move into. Accordingly, as discussed above, the clasp mechanism requires a sequence of two actions to release the second housing portion from the first housing portion.
The two stages required to release the clasp mechanism can reduce the chance that the clasp mechanism is unintentionally disengaged. For example, because the button cannot be compressed until the slider is actioned to move the blocking component from the first position to the second position, the clasp cannot be released solely by accidental contact on the button. Additionally, the two stages can be difficult (or impossible) to complete with one hand. As a result, and purely by way of example, when the clasp is used to attach a wearable device to a person's wrist, the wearer is unable to detach the wearable device on their own. In a specific, non-limiting example, the two-stage clasp mechanism can prevent a child from detaching a wearable device on their wrist (e.g., thereby childproofing the clasp mechanism against unwanted (e.g., by a parent) detaching of the wearable device). In some embodiments, the button and slider are positioned on nonadjacent surfaces when the first and second housing portions are locked together (e.g., the slide is accessible on an upper surface while the button is accessible on a side surface, the button and slider are on opposite side surfaces, and the like). The nonadjacent positions can increase the difficulty of disengaging the clasp mechanism with a single hand and/or through accidental contact with the clasp mechanism, thereby further improving the security of the two-stage clasp.
In contrast, to join the two housing portions, a nose on the first housing portion (e.g., a protruding portion of the plug) is inserted into a port on the second housing portion (e.g., an opening). As the nose enters the port along a first direction, the second striker contacts and moves the first striker along a second direction, thereby automatically compressing the button. Further, as the first striker moves in the first direction, the first striker contacts and moves the blocker along a third direction opposite the first direction, thereby automatically moving the slider from the first position to the second position. Once the nose is fully inserted, the first striker is clear of the second striker, and a second biasing component (e.g., a spring, piston, and the like) pushes the first striker in a fourth direction opposite the second direction. As a result, the button is automatically decompressed and the first and second strikers are engaged. Once the button is decompressed and/or the first and second strikers are engaged, the first biasing mechanism pushes the blocker in the first direction and into position to prevent the first striker from moving. As a result, the sliding component is automatically moved from the second position to the first position. Once the sliding component is in the first position, the two housing portions of the clasp mechanism are securely engaged.
Thus, the clasp mechanism requires two actions to be disengaged, while only requiring a single action to be engaged. As a result, the clasp mechanism can provide a more secure connection of components (e.g., loose ends) coupled to the first and second housing portions without complicating the attachment process. The secure connection can help prevent accidental disengagement of a clasp mechanism on a wearable device (e.g., requiring more than an accidental contact on the button to disengage) and/or help childproof a wearable device or monitor (e.g., to prevent unwanted removal of the wearable device by a supervised person). Purely by way of example, the clasp mechanism can be employed by the wearable devices described in U.S. Provisional Patent Application No. 63/260,440 by Monica Plath, filed Aug. 19, 2021, and U.S. patent application Ser. No. 17/891,781 by Monica Plath filed Aug. 19, 2022, the entirety of each of which is incorporated herein in by reference. In this setting, in a specific example, the clasp mechanism can help ensure that a supervised person (e.g., a toddler, an elderly person, a differently abled person, etc.) does not accidentally (or intentionally) remove the wearable device when the wearable device is helping enforce a geofence boundary for a supervising person with responsibility over the supervised person.
For ease of reference, the clasp mechanism and the components therein are sometimes described herein with reference to top and bottom, upper and lower, upwards and downwards, and/or horizontal plane, x-y plane, vertical, or z-direction relative to the spatial orientation of the implementations shown in the figures. It is to be understood, however, that the clasp mechanism and the components therein can be moved to, and used in, different spatial orientations without changing the structure and/or function of the disclosed implementations of the present technology.
Further, although primarily discussed herein as a clasp mechanism to secure the loose ends of a wearable device for supervised persons, one of skill in the art will understand that the scope of the invention is not so limited. Rather the clasp mechanism can be used to secure any other components together in various other applications. Purely by way of example, the clasp mechanism can also be used in conjunction with various other wearable devices (e.g., watches, smart watches, fitness monitors, location monitors, and the like), jewelry (e.g., bracelets, necklaces, anklets, earrings, and the like), other wearables (e.g., belts, clothing, shoes, slings, braces, helmets, and the like), bags (e.g., purses, backpacks, briefcases, fanny packs, luggage, and the like), harnesses, personal flotation devices and other vests, item straps, assemblies, and/or in various other suitable settings.
Further, the first housing portion 110 includes a port 112 (sometimes also referred to herein as an opening) while the second housing portion 120 includes a nose 122 (sometimes also referred to herein as a protruding portion). To secure the clasp mechanism 100 together, a user positions the nose 122 within the port 112, thereby automatically actioning an internal locking mechanism 150 carried by the first and second housing portions 110, 120. Once securely joined, the user must sequentially perform two actions to disconnect (e.g., disengage, disjoin, decouple, and/or disunite) first and second housing portions 110, 120 of the clasp mechanism 100.
In particular, the user must action both a sliding component 130 on the first housing portion 110 and a button 140 on the second housing portion 120. Compressing the button 140 in turn actions a component of the internal locking mechanism 150 within the clasp mechanism 100 to disconnect the first and second housing portions 110, 120. However, the button 140 cannot be compressed while a sliding component 130 is in a first position (e.g., “position C” in
The two required stages of action can help improve the security of the connection of the first and second loose ends 10, 20 provided by the clasp mechanism 100. For example, the two required stages of action can help prevent accidental disengagement of the clasp mechanism (e.g., requiring more than an accidental contact on the button to disengage) since the button cannot be compressed via accidental contact without the slider also being actioned first. Additionally, or alternatively, the two required can help childproof the clasp mechanism 100 since the two actions can be difficult for a child to understand and/or complete to disengage the clasp mechanism 100. Further, as illustrated in
As illustrated in
In some implementations, the first housing portion 110 is adjustably connected to the first loose end 10 and/or the second housing portion 120 is adjustably connected to the second loose end 20. For example, in the implementation illustrated in
In various implementations, the first housing portion 110, the second housing portion 120, and/or the components of the internal locking mechanism 150 can include various rigid plastics, metals, silicon-based materials, ceramics, and/or various other suitable materials. Purely by way of example, the first and second housing portions 110, 120 can include a silicon coated surface to provide an antibacterial surface while the components of the internal locking mechanism 150 include a rigid plastic material.
Although the actionable components of the locking mechanism 150 are discussed and illustrated herein primarily as a slidable component and a button, one of skill in the art will understand that the actionable components are not so limited. Purely by way of example, the button can be replaced with a latch, a sliding element, a rotatable component, a lever, and/or various other suitable mechanisms to action a striker within the locking mechanism 150. Similarly, the slidable component can be replaced with a latch, a button, a rotatable component, a lever, and/or various other suitable mechanisms to action a blocking component within the locking mechanism 150.
In the implementation illustrated in
As further illustrated in
As illustrated in
As further illustrated in
As discussed above, the required two stages of action results in extra security for the clasp mechanism 200. For example, because the blocking component 234 prevents the first striker 244 from moving at all when the sliding component 230 is in the first position, the button 240 cannot be accidentally and/or unintentionally compressed. Further, as illustrated in
In various embodiments, the blocking component 234 can move along various other motion paths to clear a space in the region 360. Purely by way of example, the blocking component 234 can rotate around an axis out of the page to pivot between a first position occupying the region 360 and a second position out of the region 360. In this example, the first biasing mechanism 232 can be a torsion spring that pushes the blocking component 234 toward the first position while the sliding component 230 can be replaced by a knob and/or another suitable rotating mechanism to action the blocking component 234.
In various embodiments, the first striker 244 can move along various other motion paths to disengage with the second striker 224. Purely by way of example, the first striker 244 can rotate through the region 360 to move between a first position engaged with the second striker 224 and a second position disengaged with the second striker 224. In this example, the second biasing mechanism 242 can be a torsion spring that pushes the first striker 244 toward the first position while the button 240 can be replaced by a knob and/or another suitable rotating mechanism to action the first striker 244.
As further illustrated in
In the implementations illustrated in
The motion of both the sliding component 230 and the button 240 described above continues until the surface 444 of the first striker 244 is fully clear of the surface 424 of the second striker 224. At this point, further inserting the nose 222 into the port 212 only moves the sliding component 230 while the hooked ends of the first and second strikers 244, 224 move past each other. This motion continues until the hooked ends are clear from each other, at which point the second biasing mechanism 242 causes the first striker 244 and the button 240 to move along a ninth path I illustrated in
As illustrated in
The result of the discussion above is that a single action (e.g., moving the first housing portion along the sixth path F to insert the nose 222 into the port 212) automatically performs both actions necessary to reengage the clasp mechanism 200. Further, once the nose 222 is fully inserted into the port 212, the first and second biasing mechanisms 232, 242 automatically engage and/or lock the clasp mechanism 200. Accordingly, once the nose 222 is fully inserted into the port 212, the user must perform both of the actions discussed above to disengage and/or unlock the clasp mechanism 200.
As discussed in more detail above, engaging the clasp mechanism 200 can include inserting the nose 222 of the second housing portion 220 into the port 212 of the first housing portion 210, thereby actioning the components of the locking mechanism 250. As illustrated in
In the illustrated implementation, however, the first biasing mechanism 632 includes two components (labeled individually as 632a and 632b), instead of the singular components illustrated above. The dual components of the first biasing mechanism 632 can help ensure that the sliding component 630 is biased by a balanced, sufficient pressure to prevent accidental disengagement. Further, the balanced application of force from the first biasing mechanism 632 can help ensure that the sliding component 630 has a relatively smooth action as it is pulled back and released. In various implementations, the first biasing mechanism 632 can include any suitable number of components to help facilitate the balanced, sufficient pressure and/or smooth operation of the sliding component 630. Further, it will be understood that the second biasing mechanism 642 can also include multiple components to help ensure a balanced, sufficient pressure and/or smooth operation of the button 640.
As further illustrated in
In the illustrated implementation, however, the locking mechanism 750 is configured to break away (e.g., disengage) when a sufficient separation force (sometimes also referred to herein as a “release force”) is applied to the clasp mechanism 700. For example, the first striker 744 includes a first engagement surface 746 that is negatively engaged with a second engagement surface 726 on the second striker 724. That is, the first and second engagement surfaces 746, 726 are sloped such that the first and second strikers 744, 724 can slide away from each other when the clasp mechanism 700 is subject to a sufficient separation force along the eleventh and twelfth paths K, L. Further, the first striker 744 includes a third engagement surface 748 that is negatively engaged with a fourth engagement surface 738 on the blocking component 730. That is, the third and fourth engagement surfaces 748, 738 are sloped such that the first striker 744 can push the blocking component 730 out of the region 360 as the first and second strikers 744, 724 slide away from each other. As a result, when a sufficiently large separation force is applied to the clasp mechanism 700 along the eleventh and twelfth paths K, L, the locking mechanism 750 can disengage without the user actioning both the sliding component 730 and the button 740. The disengagement allows the first and second housing portions 710, 720 to break away from each other without damaging any of the components of the locking mechanism 750.
The magnitude of the force required to disengage the locking mechanism 750 is impacted by the coefficient of static friction between the first and second engagement surfaces 746, 726 (e.g., the force required to overcome static friction and start moving); the relative slope of the first and second engagement surfaces 746, 726 with respect to each other (e.g., how negative the engagement between the first and second strikers 744, 724 is); the compressive strength and/or spring constant of the second biasing mechanism 742 (e.g., impacting the force required to compress the second biasing mechanism as the first striker 744 moves); the coefficient of static friction between the third and fourth engagement surfaces 748, 738; the relative slope of the third and fourth engagement surfaces 748, 738; and/or the compressive strength and/or spring constant of the first biasing mechanism 732. Accordingly, material selection and the customization of the orientation of the surfaces can adjust the magnitude of the separation force required to disengage the locking mechanism 750.
Purely by way of example, the magnitude can be reduced by selecting materials with relatively low-friction surfaces, increasing the negativity of the engagement between the first and second strikers 744, 724, increasing the negativity of the engagement between first striker 744 and the blocking component 734, and/or reducing the spring constant of the first and/or second biasing mechanism 732, 742. Conversely, the magnitude can be increased by selecting materials with relatively high-friction surfaces, decreasing the negativity of the engagement between the first and second strikers 744, 724, decreasing the negativity of the engagement between first striker 744 and the blocking component 734, and/or increasing the spring constant of the first and/or second biasing mechanisms 732, 742.
In various embodiments, the magnitude of the force required to disengage the locking mechanism 750 can be predetermined (by any of the customizations discussed above) to be between about 2 kilograms (kg) and about 25 kg, between about 5 kg and about 15 kg, or about 7 kg. In various embodiments, the components of the locking mechanism 750 can include various rigid plastic materials, metals, silicon-based materials, ceramics, and/or various other rigid materials.
In some implementations, the break-away features increase the safety of the clasp mechanism 700. Purely by way of example, the break-away features can be useful when the clasp mechanism 700 is deployed on a wearable device to avoid the strap from being caught on a foreign object and hurting the user. In a specific, non-limiting example, the break-away features could protect a supervised person's wrist from being hurt when the straps of a wearable device catch on something (e.g., on a portion of a slide at the playground) by disengaging the locking mechanism 750 at a relatively safe force magnitude (e.g., below a magnitude that could cause minor and/or serious injury). Additionally, or alternatively, the break-away features can increase the lifetime of the clasp mechanism 700 by allowing the components of the locking mechanism 750 to disengage before they break.
The process 800 begins at block 802 with the user actioning a first component of a locking mechanism on a first surface of the clasp mechanism. As an example, the first component can be the blocking component discussed above with respect to
At block 804, while the user maintains the first component in the actioned position, the user actions the second component of the locking mechanism on a second surface of the clasp mechanism. As discussed above, when the second surface is different from the first surface, the overall security of the locking mechanism can be improved (e.g., because it is harder for a single accidental bump to action both components). Continuing the example from above, the second component can be the first striker discussed above with respect to
Once the actioning is completed in sequence in blocks 802 and 804, the locking mechanism of the clasp will disengage. Next, at blocks 806 and 808, the user can release the first and second components of the locking mechanism, respectively. As discussed above, the clasp mechanism includes internal elements that bias the first and second components back toward a resting state. Accordingly, for example, once the first component is released, the first component moves back toward the first position. As a result of the automatic movement after the clasp is released at blocks 806 and 808, the locking mechanism will reengage if the first and/or second component are not maintained in the actioned position until the locking mechanism is fully disengaged. As a result, it can be harder to accidentally and/or unwittingly disengage the locking mechanism (e.g., a person of limited motor skills and/or limited to a single hand may, desirably, be unable to disengage the locking mechanism alone). It will be understood that, in some embodiments, the release of first and second components of the locking mechanism in blocks 806 and 808 can occur in a single action (e.g., when the user lets go of both components at once).
The process 810 begins at block 812 with receiving a first action to the first component of the locking mechanism. Continuing the example from above, the first component can be the blocking component discussed above with respect to
At block 814, while maintaining the first component in the actioned position, the process 810 includes receiving a second action to the second component of the locking mechanism. The second component can be the first striker discussed above with respect to
At block 816, the process 810 includes disengaging the locking mechanism. The locking mechanism is disengaged by decompressing at least one biasing mechanism to move a first component of the clasp mechanism away from a second portion of the clasp mechanism (e.g., to move the second housing portion away from the first housing portion). As a result, the first striker of the locking mechanism is moved out of range of the second striker, such that the two strikers cannot be rejoined to relock the clasp mechanism.
As discussed above, once the locking mechanism is disengaged, the user can release the first and second components of the locking mechanisms. Once released, at block 818, the process 810 includes returning the first and second components of the locking mechanism to their unactioned positions (e.g., a position associated with the first position of the sliding component and/or the decompressed position of the button). As discussed above, the return can be accomplished by one or more biasing mechanisms within the clasp mechanism that automatically return the components of the locking mechanism to the unactioned positions.
The process 900 begins at block 902 with choosing a desired separation force for the clasp mechanism. As discussed above, the separation force is the force that must be applied to the clasp mechanism to automatically disengage the locking mechanism of a clasp (e.g., based on break-away features built into the locking mechanism). In some embodiments, the separation force is chosen to reduce the chance of injury associated with the locking mechanism not disengaging (e.g., to limit bodily injury when the user catches straps connected to the clasp mechanism on something). As discussed above, a typical magnitude of the chosen separation force can be between about 2 kg and about 25 kg, or between about 5 kg and about 15 kg. In a specific, non-limiting example, the magnitude of the separation force can be chosen to be about 7 kg.
As discussed above, there are several parameters related to the actual separation force for the locking mechanism, such as the coefficient of static friction between various surfaces of the locking mechanism; the relative slope of the surfaces with respect to each other (e.g., how negative the engagement between the surfaces is); and/or the compressive strength and/or spring constant of the biasing mechanisms coupled to components of the locking mechanism (e.g., impacting the force required to action any of components). Adjusting any of these parameters can impact the actual separation force of the clasp. However, one or more of these parameters may be limited and/or fixed by other design constraints. Purely by way of example, the compressive strength and/or spring constant of the biasing mechanisms coupled to the components of the locking mechanism may be limited (or fully fixed) by a desired resistance when actioning the components. If the spring constant is reduced to lower the separation force, the spring constant may become too low and allow the components to be actioned unintentionally. Conversely, if the spring constant is raised to increase the separation force, the spring constant may become too high, making the components too hard to action.
Accordingly, at block 904, the process includes determining which parameters related to setting the separation force are fixed by other design constraints. This step identifies which parameters cannot be modified to increase and/or decrease the separation force. In some embodiments, this step may also fully limit the range of possible separation forces (e.g., when the only parameters remaining after block 904 offer a limited range of possible separation forces).
At block 906, the process includes determining permissible and/or possible values for the non-fixed parameters. The identification of permissible values can be dependent on other design constraints (e.g., a range of desired resistances for the biasing mechanisms coupled to the components of the locking mechanism; available space; acceptable materials; and the like). Further, once determined, the range of permissible values can be used to determine one or more combinations of values for non-fixed parameters that provide the desired separation force. In some embodiments, there are numerous possible combinations. Purely by way of example, when the materials can be varied to address friction and the relative angles of surfaces can be adjusted, there can be numerous combinations that provide the desired separation force.
At block 908, the process 900 includes constructing a clasp mechanism with the desired separation force. In some embodiments, block 908 includes choosing between two or more combinations of features.
The present technology is illustrated, for example, according to various aspects described below. The aspects described below are provided as examples and do not limit the present technology. It is noted that any of the aspects can be combined in any suitable manner except where indicated or directly contradicting.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism, including: a first housing portion, the first housing portion including: a port on a mating face of the first housing portion; and a first striker movably carried by the first housing portion and exposed within the port, wherein the first striker is moveable along a first motion path; and a second housing portion configured to connect to the first housing portion, the second housing portion including: a nose on a mating surface of the second housing portion and configured to be inserted into the port; a second striker carried by the nose, wherein the first striker is configured to move along the first motion path to engage and disengage with the second striker, and wherein engaging the first and second strikers secure the first and second housing portions together; and a blocking component movably carried by the nose, wherein the blocking component is movable along a second motion path between a first state that prevents the first striker from moving and a second state that allows the first striker to move, wherein the second motion path is different from the first motion path.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein: the first housing portion further includes a first action component accessible on a first external surface of the first housing portion and operably coupled to the first striker to move the first striker along the first motion path; and the second housing portion further includes a second action component accessible on a second external surface of the second housing portion and operably coupled to the blocking component to move the blocking component along the second motion path.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein the first external surface and the second external surface are nonadjacent when the first and second housing portions are secured together.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein the first motion path is not parallel to the second motion path.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein the second housing portion further includes a biasing mechanism operably coupled to the blocking component to bias the blocking component along the second motion path toward the first state.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein the first and second strikers engage at an interface, and wherein the interface has a slope configured to transmit at least a portion of a separation force pulling the first and second housing portions apart into moving the first striker along the first motion path to disengage the first and second strikers.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein the slope is calibrated to require the separation force to have a magnitude of at least 7 kg to action the first striker along the first motion path.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein the first striker and the blocking component are in contact at an interface when the first and second strikers are engaged, and wherein the first striker and the blocking component are sloped at the interface to transmit at least a portion of a force pulling the first and second housing portions apart into moving the blocking component along the second motion path.
In some aspects, the techniques described herein relate to a two-stage clasp mechanism wherein the first housing portion further includes an upper component and a lower component, wherein the port is formed into the upper component, wherein the lower portion includes a guiding surface that supports the second housing portion as the nose is inserted into the port, and wherein the lower component separates the port and the nose from a lower surface of the first housing portion.
In some aspects, the techniques described herein relate to a locking mechanism for use in a two-stage clasp, the locking mechanism including: a first striker movably carried by a first housing portion of the two-stage clasp, the first striker movable along a first axis and having a first hook-shaped distal region; a second striker carried by a second housing portion of the two-stage clasp and having a second hook-shaped distal region to engage with the first striker; and a blocking component movably carried by the second housing portion and movable along a second axis, wherein: the first striker is moveable along the first axis between a first position and a second position to engage and disengage with the second striker, and after the first and second strikers are engaged, the blocking component is movable along the second axis between a blocking position that prevents the first striker from moving along the first axis and a release position that allows the first striker to move along the first axis.
In some aspects, the techniques described herein relate to a locking mechanism, further including a sliding component operably coupled to the blocking component and accessible on an outer surface of the second housing portion for a user to action the blocking component between the blocking position and the release position.
In some aspects, the techniques described herein relate to a locking mechanism, further including a biasing mechanism operably coupled to the sliding component to bias the blocking component toward the blocking position.
In some aspects, the techniques described herein relate to a locking mechanism, further including a button operably coupled to the first striker and accessible on an outer surface of the first housing portion for the user to action the first striker between the first position and the second position to disengage the first and second strikers when the blocking component is in the release position.
In some aspects, the techniques described herein relate to a locking mechanism wherein the first axis is orthogonal to the second axis.
In some aspects, the techniques described herein relate to a locking mechanism wherein the first striker and the second striker are negatively engaged and configured to action the first striker along the first axis in response to a separation force on the first and second housing portions having predetermined magnitude.
In some aspects, the techniques described herein relate to a locking mechanism wherein: the first striker is positioned within a receiving port on the first housing portion; the second striker is integrally formed into a nose on the second housing portion, wherein the nose is insertable into the receiving port; a distal region of the second striker has a sloped surface positioned to push the first striker along the first axis as the nose is inserted into the receiving port; and a distal end of the blocking component has an impact surface positioned to be impacted by the first striker as the nose is inserted into the receiving port to push the blocking component along the second axis.
In some aspects, the techniques described herein relate to a child-proof clasp mechanism, including: a first component having a first mating surface, the first component including: a first opening in the first mating surface; and a first striker movably carried by the first component within the opening, wherein the first striker is moveable along a first path; and a second component having a second mating surface, the second component including: a nose protruding from the second mating surface and configured to be inserted into the first opening, wherein the nose includes a second opening positioned to receive at least a portion of the first striker when the nose is inserted into the first opening; a second striker carried by the nose and configured to engage with the first striker, wherein engaging the first second strikers secures the first and second components together; and a blocking component movably carried by the nose within the second opening, wherein the blocking component is movable along a second path between a first state configured to prevent the first striker from moving along the first path and a second state configured to allow the first striker to move along the first path.
In some aspects, the techniques described herein relate to a child-pro 17 wherein: the second component further includes a slider accessible on an upper surface of the second component, wherein the slider is movable between a locked position and a release position, and wherein the slider is operably coupled to the blocking component so that: when the slider is in the locked position, the blocking component is in the first state; and when the slider is in the release position, the blocking component is in the second state; and the first component further includes an actionable component accessible on a side surface of the first component, wherein the actionable component is coupled to the first striker to allow a user to push the first striker along the first path when the slider is in the release position to disengage the first and second strikers.
In some aspects, the techniques described herein relate to a child-pro 17 wherein the first striker has a first hooked shape, wherein the second striker has a second hooked shape configured to engage with the first hooked shape and a distal portion having a sloped surface, and wherein the sloped surface on the distal portion is positioned to push the first striker in along the first path while the nose is inserted into the first opening.
In some aspects, the techniques described herein relate to a child-pro 17 wherein second component further includes a biasing element operably coupled to the blocking component to bias the blocking component toward the first state, and wherein the blocking component has an engaging surface positioned to press the first striker against the second striker when the blocking component is in the first state.
From the foregoing, it will be appreciated that specific implementations of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the implementations of the technology. To the extent any material incorporated herein by reference conflicts with the present disclosure, the present disclosure controls. Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item 30xclusivee From the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Furthermore, as used herein, the phrase “and/or” as in “A and/or B” refers to A alone, B alone, and both A and B. Additionally, the terms “comprising,” “including,” “having,” and “with” are used throughout to mean including at least the recited feature(s) such that any greater number of the same features and/or additional types of other features are not precluded. Further, the terms “approximately” and “about” are used herein to mean within at least within 10 percent of a given value or limit. Purely by way of example, an approximate magnitude of a force means within a ten percent of the given force magnitude.
From the foregoing, it will also be appreciated that various modifications may be made without deviating from the disclosure or the technology. For example, one of ordinary skill in the art will understand that various components of the technology can be further divided into subcomponents, or that various components and functions of the technology may be combined and integrated. In addition, certain aspects of the technology described in the context of particular implementations may also be combined or eliminated in other implementations. Furthermore, although advantages associated with certain implementations of the technology have been described in the context of those implementations, other implementations may also exhibit such advantages, and not all implementations need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other implementations not expressly shown or described herein.
The present application is a continuation of U.S. patent application Ser. No. 18/073,370, filed Dec. 1, 2022, which claims the benefit of U.S. Provisional Patent Application No. 63/285,039 by Gadi Amit, filed Dec. 1, 2021, the entirety of which is incorporated herein by reference. The present application is also related to U.S. Provisional Patent Application No. 63/260,440 by Monica Plath, filed Aug. 19, 2021, U.S. Provisional Patent Application No. 63/239,865 by Monica Plath, filed Sep. 1, 2021, and U.S. Provisional Patent Application No. 63/247,692 by Monica Plath, filed Sep. 23, 2021, U.S. patent application Ser. No. 17/891,781 by Monica Plath filed Aug. 19, 2022, and U.S. patent application Ser. No. 17/901,740 by Monica Plath filed Sep. 1, 2022, the disclosures of each of which are incorporated herein in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
63285039 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18073370 | Dec 2022 | US |
Child | 18314679 | US |