Two stage print cartridge capping technique

Information

  • Patent Grant
  • 6309044
  • Patent Number
    6,309,044
  • Date Filed
    Friday, April 10, 1998
    26 years ago
  • Date Issued
    Tuesday, October 30, 2001
    23 years ago
Abstract
A service station servicing an ink-jet printhead of an ink-jet printing system. The service station includes a sled structure, and an elevator mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled capping position. A printhead cap is supported on the sled structure, and is movable relative to the sled structure for movement between a retracted position and a printhead capping position. The cap is adapted to surround and seal the printhead nozzles when the sled has been moved to the sled capping position and the printhead cap has been moved to the printhead capping position. A piston is carried by the sled structure, and the printhead cap is mounted to the piston. An actuating mechanism moves the piston from a retracted position to an extended position, wherein the printhead cap is positioned at the printhead capping position when the piston is moved to the extended position. The sled structure includes a set of sled datum structures adapted to mate with a corresponding set of datum features formed in a printhead carriage structure when the carriage structure is positioned at the service station as the sled structure is moved from the rest position to the sled capping position. The actuating mechanism is adapted to move the piston to the extended position after the sled structure has been moved from the rest position to the sled capping position.
Description




TECHNICAL FIELD OF THE INVENTION




This invention relates to ink-jet printing systems, and more particularly to a two-stage capping technique for capping the print head nozzles of an ink-jet pen when the pen is not printing.




BACKGROUND OF THE INVENTION




Pens used with ink-jet printing systems available today include print heads which have nozzle arrays with very small nozzles through which ink droplets are fired. The ink used with the pens typically dries quickly, permitting plain paper printing. Such pens are susceptible to nozzle clogging with dried ink or minute particles such as paper fibers.




Ink-jet printers have utilized a service station which includes a mechanism to cap the print head nozzles when the pen is not printing. Typically, the cap mechanism encloses the exposed outer surface of the orifice plate defining the nozzle array, to help prevent drying of the ink at the nozzles, and prevent contact with dust. The service station may also include a wiper mechanism for wiping away particles accumulated on the orifice plate, and a receptacle into which the pen periodically fires to purge dried or plugged nozzles.




In a multi-function office machine marketed by Hewlett-Packard Company as the 500 Series “OfficeJet,” the service station includes a sled to which are affixed rubber caps to serve the capping function. A motor driven rotating cam engages the sled, when the carriage is positioned at the service station, to lift the sled and its datum surfaces into engagement with the carriage. As the datum surface engage the corresponding carriage datum surfaces, the rubber caps are brought into engagement with the nozzle arrays of the print cartridges mounted in the carriage. This arrangement is a single stage capping mechanism.




This invention provides an improved two-stage capping technique for capping the nozzle arrays of an ink-jet printing system.




SUMMARY OF THE INVENTION




A service station is described for servicing an ink-jet printhead of an ink-jet printing system, the printhead having nozzles that selectively eject ink therethrough. The service station includes a sled structure, and an elevator mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled capping position. A printhead cap is supported on the sled structure, and is movable relative to the sled structure for movement between a retracted position and a printhead capping position. The cap is adapted to surround and seal the printhead nozzles when the sled has been moved to the sled capping position and the printhead cap has been moved to the printhead capping position. In an exemplary embodiment, a piston is carried by the sled structure, and the printhead cap is mounted to the piston. An actuating mechanism moves the piston from a retracted position to an extended position, wherein the printhead cap is positioned at the printhead capping position when the piston is moved to the extended position.




The sled structure includes a set of sled datum structures adapted to mate with a corresponding set of datum features formed in a printhead carriage structure when the carriage structure is positioned at the service station as the sled structure is moved from the rest position to the sled capping position. The actuating mechanism is adapted to move the piston to the extended position after the sled structure has been moved from the rest position to the sled capping position.




In accordance with a further aspect of the invention, a two-stage capping method for capping ink-jet nozzles of an ink-jet printhead carried by a carriage of an ink-jet printing system, comprising the steps of:




positioning the carriage at a service station;




in a first stage, moving a sled structure from a rest position to a sled capping position;




in a second stage, moving a printhead cap carried by the sled structure from a retracted position to a printhead capping position, the cap adapted to surround and seal the printhead nozzles when the sled has been moved to the sled capping position and the printhead cap has been moved to the printhead capping position.




The first stage further includes, in a preferred embodiment, engaging a set of sled datum structures with a corresponding set of datum features formed in the carriage to accurately locate the sled structure relative to the carriage before the printhead cap contacts the printhead nozzles. The carriage is movable along a carriage scan axis, and the first stage can optionally further include incrementally moving the carriage back and forth along the carriage scan axis about a carriage service position while the sled datum structures are being engaged with the carriage datum structures to facilitate said engaging of the sled datum structures with the carriage datum structures.











BRIEF DESCRIPTION OF THE DRAWING




These and other features and advantages of the present invention will become more apparent from the following detailed description of an exemplary embodiment thereof, as illustrated he accompanying drawings, in which:





FIG. 1

is an isometric view of a portion of a multi-function office machine with an ink-jet printing system embodying the invention.





FIG. 2

is a rear isometric view of the service station of the machine of FIG.


1


.





FIG. 3

is a partial cross-sectional view of the service station of

FIG. 2

, taken along line


3





3


of FIG.


2


.





FIG. 4

is a plan view of the service station cam, taken in the direction of


4





4


of FIG.


3


.





FIG. 5

is a partial cross-sectional view, taken along line


5





5


of FIG


3


.





FIG. 6

is a partial side cross-sectional view taken along line


6





6


of

FIG. 3

, showing a cam position during the first stage of the capping process, with the sled in the down position.





FIGS. 7-10

are cross-sectional views similar to

FIG. 6

, but with the cam in successive positions during the two stage capping process.





FIG. 11

is a cross-sectional view taken along line


11





11


of FIG


2


, showing a spring-loaded piston and cap.





FIG. 12

is a cross-sectional view of the piston and cap of

FIG. 11

, taken along line


12





12


of FIG.


11


.





FIGS. 13-18

are simplified diagrammatic views illustrating the service station sled being raised into engagement with the carriage during the capping process.





FIG. 19

is a partially exploded view of the sled assembly of the service station.





FIG. 20A

is a timing chart of the service station and flapper movement.

FIG. 20B

is a timing chart illustrating the sled dithering or dancing.





FIG. 21

is a cross-sectional view taken along line


21





21


of FIG.


19


.





FIG. 22

is a simplified schematic block diagram of a control system for the machine of FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Overview of the Invention




A two-stage capping technique is described, wherein a sled structure is moved up so that sled datums mate with carriage datums and accurately locate the sled relative to the carriage first. Then the caps are actuated, and are lifted up and mate with the pen nozzle plates, sealing against the nozzle plate.




In accordance with an aspect of the invention, first and second toggles, intermated by means of involute action, push up on a retainer structure, which keeps both sides parallel during motion, and which has pistons which are spring loaded-upwardly relative to the retainer. Rubber caps are positioned on the top of the pistons, and mate with the pens to be capped.




The service station includes a double-sided cam. On the front side, the cam has a primary cam track or cam surface which lifts the sled up from a sled rest position into engagement with the carriage at a sled extended position, and lowers the sled back down to the sled rest position. The cam back side has a secondary cam surface or track which runs to the outer periphery of the cam. A “toggle” arm of the second toggle hangs down and has a follower feature which is engaged by this secondary cam track. When the sled is down, in the rest position by the front side of the cam, the follower feature of the second toggle is in a clear area on the back of the cam and is inactive, i.e. it is clear of all features of the cam and will not be engaged by the cam no matter how it is rotated. A “scoop” shape or feature on the end of the arm hits the shaft of the cam if the toggle is inadvertently stuck up which forces it into the down, retracted position. When the sled is lifted this follower feature engages with the secondary cam surface on the back of the cam when that surface rotates around, with the intent of actuating the secondary action. This raises the retainer structure, moving the pistons upwardly from the retracted position to a printhead capping position. The retainer structure has two pistons snapped into it with a precompressed spring in-between the pistons and the retainer. The top of the pistons have the rubber caps snapped onto them such that when the spring-loaded pistons are raised the caps hit the nozzle plates of the pens to be capped. The spring is then compressed, giving the desired compression.




Exemplary Embodiment




In an exemplary embodiment, the service station is employed in an ink-jet printing system comprising a multi-function office machine, which provides printing, optical scanning and other functions. One exemplary type of such a multi-function office machine to which the invention can be applied is described in application Ser. No. 08/724,297, filed Sep. 9, 1996, “Multiple-Function Printer Document Deflector Actuation Coupled to Service Station,” (the '297 application) the entire contents of which are incorporated herein by this reference.





FIG. 1

is an isometric view of a portion of a multi-function office machine


40


embodying the invention. The machine includes an ink-jet printing system


50


wherein a print medium in sheet form is passed along a media path from an input tray to a print zone. Two ink-jet print cartridges or pens


52


,


54


are held in a scanning carriage


56


, which is movable along a scan axis. During printing, the carriage


56


is passed along the scan axis, and the print cartridges


52


,


54


are selectively activated to eject droplets of ink onto the surface of the print medium. The first print cartridge


52


holds black ink. The second print cartridge


54


is a tri-compartment, tri-color pen for cyan, magenta and yellow inks.




The machine


40


includes apparatus that provides motion to the ink-jet cartridges


52


,


54


and locates them in order to provide good image quality. This apparatus includes a Y or carriage scan axis drive system


60


and the carriage


56


. The Y drive system provides an accurate motion to the carriage, in position and speed. The motion is provided by a motor-belt system, held at each end of the carriage slider rod


58


. The drive belt


62


is driven by the motor, and is reeved about pulleys (e.g. pulley


64


). The carriage


56


is secured to the drive belt, so that rotational motor movement is translated into linear motion of the carriage along the slider rod. The carriage is constrained from rotation about the slider rod


58


by a roller assembly


56


G engaging a track in the frame


68


.




The carriage motion speed and position are read by an optical encoder sensor mounted on the carriage, sensing lines on a linear encoder strip


66


. An exemplary encoder system is described in U.S. Pat. No. 5,276,970, CODESTRIP IN A LARGE-FORMAT, IMAGE-RELATED DEVICE, the entire contents of which are incorporated herein by this reference. Electrical signals to and from the carriage are supported by a trailing cable, which leads to the machine controller.




The machine


40


further includes a sheet deflector or “flapper”


80


which is movable to a first position to constrain the position of a document being scanned by the scanner function, or to a second position during printing functions which does not constrain the position of a medium sheet. This flapper and its function is described more fully in the referenced '297 application.




The carriage holds the removable pens


52


,


54


in stalls


56


A,


56


B, and provides a correct position of the pens in space, i.e. relative to each other and to the paper or print medium.




The ink-jet printing system further includes a service station


100


for performing periodic servicing of the print head nozzle plates


52


A,


54


A (

FIG. 13

) comprising each cartridge


52


,


54


. This servicing includes wiping and capping services. The service station


100


also actuates the flapper


80


to move it to the first position while the carriage is at the service position at the station


100


. In a general sense, the '297 application discloses a service station which performs wiping and capping services, and actuates a flapper. In accordance with the invention, the service station


100


provides a two-stage capping function.





FIGS. 2-18

illustrate the service station


100


in further detail. The service station includes a frame structure


102


including a back plate


104


and a side plate


106


. The back plate supports a stepper motor


110


which drives both the service station actuation and the document deflector (flapper). A reduction gear


112


is coupled to a pinion mounted on the motor drive shaft, and engages the gear teeth


122


on the outer periphery of the cam


120


to rotate the cam on mounting shaft


124


. The cam


120


has a raceway


128


formed on its front face


120


A (FIG.


4


).




The service station


100


further includes a sled assembly


140


which is supported on a carrier assembly


150


raised and lowered by the cam


120


. The carrier assembly, the cam and the motor


110


together comprise an elevator apparatus for raising and lowering the sled between the sled rest position and the sled extended position. As shown in

FIG. 5

, the carrier assembly includes a carrier


152


, a cam follower


154


which is assembled to the carrier to pivot, at one end of the follower, about pin


154


A, and a spring


156


. The follower


154


has a follower pin


154


B protruding from an intermediate position, which is captured in the raceway


128


of the cam


120


. The spring


156


is connected between the opposite end from the pivot end of the follower


154


and the floor panel


152


A of the carrier. The carrier fits within the frame structure


102


of the service station. The opposed side walls


152


B,


152


C have protruding therefrom bosses


152


D,


152


E which are fitted for sliding movement in vertically oriented slots formed in the side walls of the frame


102


. For example,

FIG. 2

shows boss


152


E fitted into slot


106


A of the side wall


106


. The slots and bosses permit vertical movement of the carrier assembly


150


within the frame.




The sled assembly


140


includes the sled structure


142


which carries several elements, including spring-loaded printhead wipers


160


,


162


, printhead caps


170


,


172


, as well as other elements including a retainer structure


174


, a left toggle arm


176


and a right toggle arm


178


.




Vertical movement of the carrier assembly is accomplished by the elevator apparatus by driving the motor


110


in a direction to turn the cam


120


in a counterclockwise (CCW) direction as viewed in FIG.


4


. With the pin


154


B of the follower


154


captured in the raceway


128


, the wall


128


A forms a cam surface that will contact the pin


154


B and exert an upward force thereon as the radius of the wall portion contacting the pin increases. This in turn lifts the carrier assembly


150


(and the sled assembly


140


mounted to the carrier). It will be seen that the radius of the wall


128


A eventually reaches an essentially constant radius, so that the carrier assembly


150


is no longer urged upwardly by further rotation of the cam


120


. This provides a dwell state of the carrier position during further cam rotation, which is used to actuate the flapper.




The service station


100


is adapted to provide some overtravel, e.g. 1 mm, of the sled assembly


140


in the absence of the carriage at the service station, i.e. the sled will be raised about 1 mm higher in the absence of the carriage than if the carriage is present. The spring


156


extends to accommodate the overtravel of the follower relative to the sled and carrier, ensuring that the sled fully mates with the carriage.




To the extent just described, the exemplary embodiment of the service station


100


operates in the same fashion as the capping and wiping system


240


described in the '297 application. In accordance with the invention, the service station


100


is adapted to provide a two-stage capping process to cap the nozzle plates of the pen cartridges when the carriage is moved to the service station.




The sled assembly


140


mounted to the carrier assembly


150


includes the sled structure


142


which carries several elements, including spring-loaded printhead wipers


160


,


162


, printhead caps


170


,


172


, as well as other elements including a retainer structure


174


, a left toggle arm


176


and a right toggle arm


178


.

FIG. 19

is a partially exploded view of the sled assembly


140


showing the retainer,


174


and the toggles


176


,


178


.




The caps


170


,


172


are fabricated of an elastomeric material for compliant seating against the nozzle array substrate of the pen cartridges, and have a peripheral wall which surrounds and seals the printhead nozzles when the cap is seated against the nozzle plate. These caps are carried on respective piston members


180


,


182


which fit within rectilinear apertures formed in the sled structure


142


.

FIG. 11

illustrates an exemplary aperture


142


A formed in the sled structure, with piston


180


and cap


170


mounted thereon. The pistons can move up and down within a range of movement with respect to the top surface


142


B of the sled structure. Opposing walls of the pistons have ridges formed therein to accurately guide the pistons upwardly and downwardly with respect to the apertures in the sled structure. The pistons are typically injection molded from an engineering plastic material. To improve the accuracy of the guiding, the ridges are formed with zero draft in an exemplary embodiment, while the walls have some draft to facilitate removal from the mold.

FIG. 12

shows exemplary piston walls


180


E and


180


F having respective guide ridges


180


H and


180


I extending therefrom.




The retainer


174


is a frame structure which carries the pistons


180


,


182


. The retainer has a generally U-shaped configuration, formed by an intermediate bar portion


174


A and transversely extending leg portions


174


B,


174


C. A piston support structure


174


D,


174


E is formed in the respective leg portions


174


B,


174


C. Each piston support structure, e.g.


174


D, includes a rectilinear frame portion (


174


D


1


), a spring support plate portion (


174


D


2


), with open slots (


174


D


3


,


174


D


4


) formed therein.




The pistons have barbed side members which are received and captured in the slots of the piston support structure, e.g. piston


180


has barbed side members


180


A,


180


B (

FIG. 11

) which fit through slots


174


D


3


,


174


D


4


, and the barb ends slide over the edges of the frame portion


174


D


1


to capture the piston


180


. A coiled spring


180


C,


182


C is fitted in compression between the support plate portion of the piston support structure and the piston head. Thus, e.g., for piston


180


, spring


180


C is fitted between plate portion


174


D


2


and piston head portion


180


D (FIG.


11


). This spring-loads the piston head portions carrying the caps


170


,


172


upwardly with respect to the retainer


174


, while permitting movement of the caps with respect to the retainer as the caps are urged against the printhead nozzle plates, thereby compressing the springs.




The retainer


174


leg portions


174


B,


174


C are guided in sled retainer guide slots, e.g, slot


142


B for leg portion


174


B, which permit up/down movement of the retainer within the slots relative to the sled structure


142


. The left and right toggles


176


,


178


are fitted into toggle pivots formed in the sled structure


142


, e.g. pivots


142


C,


142


D capturing axle portions, e.g. portion


178


A, defined at ends of the toggles. The toggles can rotate about the pivots through a range of movement. Each toggle has a pair of arcuate arm portions defining cam surfaces which contact the retainer


174


, straddling a respective piston support structure, to provide a means of raising and lowering the pistons and caps relative to the upper surface of the sled structure


142


. Thus, toggle


176


has cam surfaces


176


B,


176


C which contact respective follower surfaces


174


B


1


,


174


B


2


of the retainer leg portion


174


B. Toggle


178


has cam surfaces


178


B,


178


C which contact respective follower surfaces


174


C


1


,


174


C


2


of the retainer leg portion


174


C.




The toggles


176


,


178


are further formed with respective sets of involute teeth


176


D,


178


D which are intermated when the toggles are assembled into the sled structure


142


. The toggle


178


further has a toggle arm


178


E having a cam follower


178


F extending therefrom at a distal end thereof.




The cam


120


has formed on its rear surface


120


B a secondary cam


126


(

FIG. 6

) defined by wall


126


A. The cam follower


178


F of the toggle


178


follows this cam during rotation of the cam


120


. At an abrupt change of the cam surface radius at


126


C, the toggle arm


178


E is actuated. When the toggle arm is actuated by the secondary cam surface


126


of the cam, the toggle


178


rotates about its pivot. The toggle


178


is intermated with the toggle


176


by means of the involute teeth


176


D,


178


D. This gives conjugate action as the two toggles


176


,


178


rotate (in opposite directions) in a smooth and accurate fashion.




The toggle cam surfaces


176


B,


176


C and


178


B,


178


C then push up on the follower surfaces


174


Bl,


174


B


2


,


174


C


1


,


174


C


2


of the retainer (two on each side for a total of four mating surfaces to guarantee parallelism) which raises the retainer


174


. The intermediate bar portion


174


A provides a cross linkage on the retainer


174


such that both sides of the retainer where the pistons are snapped in place are kept parallel to the sled structure


142


.




The shape of the toggle cam surfaces


176


B,


176


C and


178


B,


178


C is such that the angle always compensates for the sliding friction between the toggle material and the retainer material such that the resultant force vector is purely vertical during the lifting motion. The angle of compensation is the arctangent of the coefficient of friction between the toggle


176


,


178


material and the retainer


174


material. The angle of compensation A is illustrated in

FIG. 21

, where arrow A


1


is the force vector applied by and normal to the cam surface


176


B at the point of contact with the retainer surface


174


B


1


, arrow A


3


indicates the force vector due to friction between the contacting surfaces, and arrow A


2


indicates the desired resultant force vector in the vertical direction. In the absence of any relative sliding, arrow A


1


would coincide with A


2


to provide a vertical force vector. However, since the toggle is rotating about its pivot and the cam surface


176


B is sliding against the retainer surface


174


B


1


, there is a small horizontal force vector in the direction of arrow A


3


due to the friction. By angling the cam surface at angle A equal to the arctangent of the coefficient of friction between the two surfaces, the small frictional horizontal force vector is exactly compensated by a horizontal force vector in the direction opposite to the direction indicated by arrow A


3


. By way of example, if the toggle


176


is fabricated of acetal with 20% Teflon (TM), and the retainer is fabricated of Nylon (TM) with 20% Teflon, resulting in a coefficient of friction equal to 0.07, the compensation angle is about 4 degrees.





FIGS. 6-10

illustrate the two-stage capping process of the service station


100


.

FIG. 6

shows the station with the sled assembly


140


in the fully lowered, rest position. At this sled position, the toggle follower


178


F is positioned well below the secondary cam surface, and so irrespective of the angular position of the cam


120


, the toggle arm will not be actuated.




Now assume that the motor


110


has been actuated, rotating the cam


120


to raise the sled assembly in the first (sled lifting) stage of the capping process. From the perspective of

FIGS. 6-10

, the cam


120


is rotated clockwise (CW). The respective primary and second cam surfaces are appropriately phased in relation to one another that when the sled has been lifted, the secondary cam surface radius is at it largest size, indicated as radius R1 (FIG.


7


). With this cam surface radius, the cam follower


178


F is not actuated, and thus the toggles have not yet been actuated at the cycle phase illustrated in FIG.


7


.




The motor


110


continues to drive the cam


120


in a CW direction. As the cam rotates, the radius of the secondary cam surface changes from R


1


to a smaller radius R2 (FIG.


8


), presenting a sharply angled cam surface feature


126


C. This surface feature comes into contact with the toggle arm follower


178


F, actuating the toggles. This actuation takes place over a relatively small angular excursion of the cam, and raises the pistons


180


,


182


.




The motor continues to drive the cam


120


in the CW direction, in this exemplary embodiment, to actuate the flapper in the same manner described in the references '297 application. For this reason, the secondary cam surface


126


is provided with an exemplary dwell region D (FIG.


8


), wherein the radius remains at the smaller radius R2, keeping the toggles actuated and the pistons and caps in the fully extended position, as illustrated in

FIGS. 9 and 10

showing successive positions of the cam


120


and the toggle arm


178


E. Once the flapper has been actuated, e.g. to the position for constraining document pages to be scanned, the motor is stopped. At this phase of the service station cycle, the carriage pens are capped, and the flapper has been moved to the scanner position.





FIGS. 13-18

are simplified diagrammatic views illustrating the stages of the capping process. Here, the carriage


56


has been moved to the service position at the service station


100


by the carriage scan drive system. The carriage holds two pen cartridges


52


,


54


, having respective printhead nozzle plates


52


A,


54


A. The sled structure includes three sled datum tabs


140


C,


140


D,


140


E. The carriage


56


includes three corresponding datum features


56


C,


56


D and


56


E which receive the sled datum features when the sled is raised upwardly, to register the position of the carriage and sled for proper capping of the nozzle array plates.





FIGS. 13-14

show the sled


140


in the down, rest position relative to the carriage. Now the motor


110


is actuated to start the capping process. The sled assembly


140


is raised by action of the primary cam surface.

FIG. 15

shows the sled assembly in an intermediate position on its movement to the fully raised position. In accordance with another aspect of the invention, the carriage scan drive system is actuated to dither or “dance” the position of the carriage in incremental movements on either side of the service position, to facilitate engaging of the sled datums with the corresponding carriage datum features. In an exemplary embodiment, the carriage Y axis drive is driven at a given power/force level from the carriage service position for short time increments, e.g. 0.1 second, first in on direction then another, and so on. This movement is to overcome the frictions in the system; the carriage actually need not move for this dithering/dancing process to be effective. As the sled reaches its fully raised position, the dithering movement is stopped, and the datums have been engaged, as illustrated in

FIGS. 16-17

. After the position of the carriage and sled has been registered, as the service station motor continues to drive the cam


120


, the toggles are fully actuated, lifting the retainer


174


with the pistons and caps. As the caps


170


,


172


come into contact with the nozzle plates


52


A,


54


A, the piston springs


180


C,


182


C compress to resiliently urge the caps in sealing engagement against the nozzle plates. When the machine is to perform printing functions, the motor is driven in the reverse direction, turning the cam in the reversed direction to lower the sled and disengage the toggle follower from the secondary cam surface. As illustrated in

FIG. 9

, a “scoop” shape or angled feature


178


G on the end of the toggle follower hits the shaft


124


of the cam


120


if the toggle is inadvertently stuck up which forces it into the down, retracted position.





FIG. 20A

is a timing chart of the service station and flapper movement. This shows the angular position of the cam


120


, the number of steps and turns of the stepper motor


110


and the secondary cam radius (relative to the follower pin


154


B contact) at different stages of the capping cycle. There is an initialization, wherein the motor is driven in the reverse direction to drive the sled against a down stop, and the motor is then driven


16


steps in the forward direction to position the cam at a start position, which is defined as 0 degrees. As shown in

FIG. 20A

, the toggle actuation commences at a cam position (338.2761 degrees) just in advance of the cam position (350 degrees) at which the sled is deemed to be at the sled extended (up) position. The sled “dancing” procedure is commenced at this same cam position. At the end of the sled capping procedure and after the flapper is put to the down position, the sled reaches an up stop surface.





FIG. 20B

is a timing chart illustrating the sled dithering or dancing. As shown therein, this is an open loop procedure. With the carriage at the service (start) position, and with the service station motor at the position indicated, the carriage motor


65


(

FIG. 22

) is first driven right at 35% pulse width modulation (PWM) for 0.1 second, then left at 30% PWM for 0.1 second, then, with the motor


110


moved 24 steps, right at 27% PWM for 0.1 second, then with the motor


110


moved an additional 25 steps left again at 25% PWM, then the carriage motor drive is turned off. The application of the forces on the carriage in directions along the carriage scan axis assist is proper seating of the sled/carriage datums against frictional forces, and need not result in any actual carriage movement along the carriage axis.





FIG. 22

is a simplified control block diagram, illustrating the machine controller


200


, which provides drive commands to the service station motor


110


and the carriage motor


65


, and printhead firing signals to the printheads for the cartridges


52


,


54


. The controller receives carriage position data from the carriage encoder


67


to keep track of the carriage position.




The advantages of the two stage capping technique include the following. A more accurate capping location is ensured by the technique. On some known ink-jet printing systems, the caps touch the pens before the location features are fully engaged into the carriage. Even as the sled is forced into the correct location, the caps have to squeegee over into the correct location. Due to the flexibility of the rubber caps and the clearance between all the parts, the actual seal against the pen never fully gets moved to the desired final position. Most carriages attempt to have sufficient lead-in to minimize this misalignment during mating of the cap surfaces, however due to necessary clearance the final position of the sled is not complete until it is fully seated into the carriage.




It is known to utilize spring loaded caps. The advantages of the two-stage capping technique of this invention include the fact that a simple spring loaded cap takes up more room in both overall height and in travel to seat the sled and compress the cap spring. Moreover, the pretravel compression of the cap spring has to occur before the sled is seated into the carriage. This not only increases the height, but leads to inaccuracies, for now the sled has to have accurate sliding lead-ins for that whole compression length and seating distance of the sled to the carriage. In accordance with the two stage capping of this invention, the sled is fully seated and accurately located into the carriage before the pistons/caps, which are accurately guided in the sled, are lifted up into engagement with the nozzle plates of the pens. The sled needs to “float” some amount to take up tolerances, i.e. to comply with any irregularities of parts and fits within some expected range of tolerances. This seating of the sled fully takes up those tolerances before the caps are raised into engagement against the nozzle plates.




Another advantage of the two-stage capping technique is that the compressive force input from the cam on the second stage of the capping process is distributed over a broader cycle than during single stage capping, since the rubber cap and the override spring in the sled assembly are all being compressed at the same time. This results in higher peak torques on the service station motor. In contrast, in the two stage capping technique, the total compressive energy is the same, but is distributed over more travel of the cam, so that the peak forces are lower.




Two-stage capping in accordance with the invention provides a vertical gain, i.e. less vertical height is required to accomplish the two functions of seating the sled and capping the pens. This is analogous to a two stage hydraulic cylinder where more stroke is obtained for a given package size.




Since the second capping stage is sprung relative to the sled, and the sled is fully seated before the actuation of the caps, the springs


180


C,


182


C provide independent suspensions for the two piston/cap assemblies. That is, the capping force and location accuracy are not dependent on the existence, type or condition of the pen in the other stall of the carriage. This “independent suspension” also gives it better planarity compensation than a regular cap design which depends on the seating of the sled datums into the carriage, and then the physical interference of the rubber determines the seal. For a simple spring-loaded cap, the capping actions are not independent for the cap spring is being compressed before the sled is seated and therefore biasing the sled differently depending on the state of the opposite pen stall.




It is understood that the above-described embodiments are merely illustrative of the possible specific embodiments which may represent principles of the present invention. Other arrangements may readily be devised in accordance with these principles by those skilled in the art without departing from the scope and spirit of the invention.



Claims
  • 1. A service station for servicing an ink-jet printhead of an ink-jet printing system, the printhead having nozzles that selectively eject ink therethrough, comprising:a sled structure; an elevator mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled extended position; a printhead cap supported on said sled structure and movable relative to the sled structure for movement between a retracted position and a printhead capping position, said cap adapted to surround and seal the printhead nozzles when said sled has been moved to said sled extended position and said printhead cap has been moved to the printhead capping position; and an actuating mechanism for providing relative motion between the sled structure and the printhead cap to move the printhead cap from the retracted position to the printhead capping position.
  • 2. The service station of claim 1 further including a piston carried by the sled structure, said printhead cap mounted to said piston, and wherein actuating mechanism is adapted to move the piston from a retracted position to an extended position, wherein said printhead cap is positioned at said printhead capping position when the piston is moved to said extended position.
  • 3. The service station of claim 1 wherein said sled structure includes a set of sled datum structures adapted to mate with a corresponding set of datum features formed in a printhead carriage structure when said carriage structure is positioned at said service station as said sled structure is moved from said rest position to said sled extended position.
  • 4. The service station of claim 3 wherein said actuating mechanism is adapted to move said printhead cap to said printhead capping position after said sled structure has been moved from said rest position to said sled extended position and said sled datum structures have been engaged in said datum features of said printhead carriage structure.
  • 5. The service station of claim 1 wherein said printhead cap is coupled to said actuator mechanism by a spring bias structure.
  • 6. The service station of claim 1 wherein said actuator mechanism includes a toggle member mounted for pivoting movement about a pivot, said toggle member having a first contact surface, an actuating member for imparting rotational force to the toggle member to cause said pivoting movement, and said printhead cap is supported on a structure having a second contact surface, wherein said first contact surface engages said second contact surface at a compensation angle with respect to a direction of movement of said printhead cap, said compensation angle adapted to compensate for frictional forces imparted as a result of friction between said first and second surfaces.
  • 7. The service station of claim 6 wherein the engagement of the first contact surface and the second contact surface is characterized by a coefficient of friction, and said compensation angle is the arctangent of said coefficient of friction.
  • 8. A service station for servicing first and second ink-jet printheads mounted in a scanning carriage of an ink-jet printing system, the printheads having nozzles that selectively eject ink therethrough, comprising:a sled structure; an elevator mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled extended position; first and second printhead caps supported on said sled structure and movable relative to the sled structure for movement between a retracted position and a printhead capping position, said caps adapted to surround and seal the printhead nozzles of a corresponding printhead when said sled has been moved to said sled extended position and said printhead cap has been moved to the printhead capping position; first and second piston structures on which are respectively mounted said first and second printhead caps, said piston structures arranged for sliding movement transverse to a sled surface; a retainer structure supporting said first and second piston structures; an actuating mechanism for moving the retainer structure and thereby said piston structures and said printhead caps relative to the sled structure to move said first and second printhead caps from the retracted position to the printhead capping position.
  • 9. The service station of claim 8 wherein said first and second piston structures are independently suspended by respective spring members relative to the retainer structure, and wherein said spring members are compressible to provide proper compressive force between said printhead caps and respective printhead nozzle plates when said printhead caps seal said nozzles.
  • 10. A two-stage capping method for capping ink-jet nozzles of an ink-jet printhead carried by a carriage of an ink-jet printing system, the carriage movable along a carriage scan axis, the printhead having nozzles that selectively eject ink therethrough, comprising the steps of:positioning the carriage at a service station; in a first stage, moving a sled structure from a rest position to a sled capping position and engaging a set of sled datum structures with a corresponding set of datum features formed in said carriage to accurately locate the sled structure relative to the carriage before the printhead cap seals said printhead nozzles, and applying carriage drive forces to move the carriage back and forth along the carriage scan axis about a carriage service position to facilitate said engaging of said sled datum structures with said carriage datum structures; in a second stage, providing relative movement between said sled structure and a printhead cap carried by said sled structure to move the printhead cap from a retracted position to a printhead capping position, said cap adapted to surround and seal the printhead nozzles when said sled has been moved to said sled capping position and said printhead cap has been moved to the printhead capping position.
  • 11. The method of claim 10 wherein said second stage includes engaging a printhead nozzle plate with said printhead cap when the cap is in the printhead capping position.
  • 12. The method of claim 11 further comprising the step of mounting the printhead cap on a spring-loaded piston including a spring member, wherein said step of engaging the printhead nozzle plate with the printhead cap further includes compressing said spring to provide a desired compression between the cap and the nozzle plate.
  • 13. A service station for servicing an ink-jet printhead of an ink-jet printing system, the printhead having nozzles that selectively eject ink therethrough, comprising:a sled structure; an elevator mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled extended position; a printhead cap supported on said sled structure and movable relative to the sled structure for movement between a retracted position and a printhead capping position, said cap adapted to surround and seal the printhead nozzles when said sled has been moved to said sled extended position and said printhead cap has been moved to the printhead capping position; an actuating mechanism for moving the printhead cap from the retracted position to the printhead capping position; and wherein said elevator mechanism includes a motor, a gear drive, a rotatable cam driven through the gear drive, a primary cam track located on a first cam surface, and a primary cam follower engaging the primary cam track and adapted to transfer force to the sled structure, and wherein said actuator mechanism includes a secondary cam track located on a second cam surface of said rotatable cam, a secondary cam follower engagable with the secondary cam track and adapted to transfer force to a retainer structure supporting the printhead cap.
  • 14. The service station of claim 13 wherein said secondary cam follower is connected to a toggle arm which is rotated in a first direction by said secondary cam follower when engaged by said secondary cam track to move said retainer structure in a second direction to position the printhead cap at the printhead capping position, said toggle arm having a deflector surface for contacting a stop surface when said sled structure is moved from said sled extended position toward said sled rest position to rotate said toggle arm in a third direction opposite said first direction to ensure retraction of said printhead cap from said capping position to said retracted position.
  • 15. A service station for servicing first and second ink-jet printheads mounted in a scanning carriage of an ink-jet printing system, the printheads having nozzles that selectively eject ink therethrough, comprising:a sled structure; an elevator mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled extended position; first and second printhead caps supported on said sled structure and movable relative to the sled structure for movement between a retracted position and a printhead capping position, said caps adapted to surround and seal the printhead nozzles of a corresponding printhead when said sled has been moved to said sled extended position and said printhead cap has been moved to the printhead capping position; first and second piston structures on which are respectively mounted said first and second printhead caps, said piston structures arranged for sliding movement transverse to a sled surface; a retainer structure supporting said first and second piston structures; an actuating mechanism for moving the retainer structure and thereby said pistons structures and said printhead caps to move said first and second printhead caps from the retracted position to the printhead capping position, said actuating mechanism including first and second pivoted toggles intermated by involute teeth, said first and second toggles including respective contact surfaces for contacting said retainer structure as said toggles are pivoted.
  • 16. A service station for servicing an ink-jet printhead mounted in a scanning carriage of an ink-jet printing system, the printhead having nozzles that selectively eject ink therethrough, comprising:a sled structure having a sled datum structure adapted for mating with a corresponding carriage datum structure; a first actuating mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled extended position to position the sled relative to the scanning carriage during a servicing mode when the scanning carriage is positioned at the service station, such that the sled datum structure mates with the carriage datum structure to accurately locate the sled relative to the carriage; a printhead cap supported on said sled structure and movable relative to the sled structure for movement between a retracted position and a printhead capping position, said cap adapted to surround and seal the printhead nozzles after said sled has been moved to said sled extended position as said printhead cap has been moved to the printhead capping position; and a second actuating mechanism for providing relative motion between the sled structure and the printhead cap to move the printhead cap from the retracted position to the printhead capping position.
  • 17. An ink-jet printing system, comprising:a scanning carriage having a carriage datum structure; an ink-jet printhead mounted in the carriage, the printhead having nozzles that selectively eject ink therethrough; a service station for servicing the printhead, comprising: a sled structure having a sled datum structure adapted for mating with the carriage datum structure; a first actuating mechanism coupled to the sled structure for moving the sled structure between a rest position and a sled extended position to position the sled relative to the scanning carriage during a servicing mode when the scanning carriage is positioned at the service station, such that the sled datum structure mates with the carriage datum structure to accurately locate the sled relative to the carriage; a printhead cap supported on said sled structure and movable relative to the sled structure for movement between a retracted position and a printhead capping position, said cap adapted to surround and seal the printhead nozzles after said sled has been moved to said sled extended position as said printhead cap has been moved to the printhead capping position; and a second actuating mechanism for providing relative motion between the sled structure and the printhead cap to move the printhead cap from the retracted position to the printhead capping position.
  • 18. A method for capping ink-jet nozzles of an ink-jet printhead carried by a carriage of an ink-jet printing system, the carriage movable along a carriage scan axis, the printhead having nozzles that selectively eject ink therethrough, comprising the steps of:positioning the carriage at a service station; moving a sled structure from a rest position to a sled capping position wherein a sled datum structure engages a corresponding carriage datum structure on the carriage to accurately locate the sled relative to the carriage; providing relative movement between said sled structure and a printhead cap carried by said sled structure to move the printhead cap from a retracted position to a printhead capping position, said cap adapted to surround and seal the printhead nozzles when said sled has been moved to said sled capping position and accurately located relative to the carriage and when said printhead cap has been moved to the printhead capping position; applying carriage drive forces to the carriage to incrementally move the carriage back and forth along the carriage scan axis about a carriage service position as the sled is being moved to facilitate said engaging of said sled datum structures with said carriage datum structures.
US Referenced Citations (3)
Number Name Date Kind
5155497 Martin et al. Oct 1992
5252993 Tomli Oct 1993
5790148 Gavillet et al. Aug 1998
Foreign Referenced Citations (1)
Number Date Country
2 284 576 Jun 1995 GB
Non-Patent Literature Citations (7)
Entry
EP 0 635 371 A, Hewlett-Packard Company, Jan. 25, 1995.
EP 0597 621 A, Xerox Corp, May 18, 1994.
EP 0 780 232 A, Hewlett Packard Co, Jun. 25, 1997.
WO 96 34754 A, Encad Inc., Nov. 7, 1996.
EP 0 480 302 A, Cannon KK, Apr. 15, 1992.
EP 0719 645 A, OCD SA, Jul. 3, 1996.
European Search Report dated Jul. 15, 1999 re European Patent Application 99302491.